elipl/lib/til/type.ex
2025-07-11 21:45:31 +02:00

818 lines
31 KiB
Elixir

# defmodule Tilly.X.Type do
# @moduledoc """
# Core type system definitions for Tilly — a Lisp that transpiles to Elixir,
# using set-theoretic types represented as Ternary Decision Diagrams (TDDs).
#
# Supports:
# - Set-theoretic types (union, intersection, negation)
# - Structural polymorphism with `forall`
# - Type constraints (e.g., Enumerable(~a))
# - Structural map types
# """
#
# # === Monotype TDD Representation ===
#
# defmodule TDD do
# @moduledoc """
# Represents a ternary decision diagram node for types.
# """
#
# defstruct [:decision, :yes, :no, :maybe]
#
# @type t :: %__MODULE__{
# decision: Tilly.Type.Decision.t(),
# yes: TDD.t() | :any | :none,
# no: TDD.t() | :any | :none,
# maybe: TDD.t() | :any | :none
# }
# end
#
# # === Type Variable ===
#
# defmodule Var do
# @moduledoc """
# Represents a type variable in a polymorphic type.
# """
#
# defstruct [:name, constraints: []]
#
# @type t :: %__MODULE__{
# name: String.t(),
# constraints: [Tilly.Type.Constraint.t()]
# }
# end
#
# # === Structural Map Type ===
#
# defmodule TDDMap do
# @moduledoc """
# Structural representation of a map type, with per-key typing and optional openness.
# """
#
# defstruct fields: [], rest: nil
#
# @type t :: %__MODULE__{
# fields: [{TDD.t(), TDD.t()}],
# rest: TDD.t() | nil
# }
# end
#
# @doc """
# Checks if t1 is a subtype of t2 under the current substitution.
# t1 <: t2 iff t1 & (not t2) == None
# """
# def is_subtype(raw_t1, raw_t2, sub) do
# # Use the apply_sub we defined/refined previously
# t1 = tdd_substitute(raw_t1, sub)
# t2 = tdd_substitute(raw_t2, sub)
#
# # Handle edge cases with Any and None for robustness
# cond do
# # None is a subtype of everything
# t1 == tdd_none() ->
# true
#
# # Everything is a subtype of Any
# t2 == tdd_any() ->
# true
#
# # Any is not a subtype of a specific type (unless that type is also Any)
# t1 == tdd_any() and t2 != tdd_any() ->
# false
#
# # A non-None type cannot be a subtype of None
# t2 == tdd_none() and t1 != tdd_none() ->
# false
#
# true ->
# # The core set-theoretic check: t1 \ t2 == None
# tdd_diff(t1, t2) == tdd_none()
#
# # Alternatively: Type.tdd_and(t1, t2) == t1 (but this can be tricky with complex TDDs if not canonical)
# # The difference check is generally more direct for subtyping.
# end
# end
#
# # === Type Decisions (Predicates) ===
#
# defmodule Decision do
# @moduledoc """
# A type-level decision predicate used in a TDD node.
# """
#
# @type t ::
# :is_atom
# | :is_integer
# | :is_float
# | :is_binary
# | :is_list
# | :is_tuple
# | :is_map
# | :is_function
# | :is_pid
# | :is_reference
# | {:literal, term()}
# | {:tuple_len, pos_integer()}
# | {:key, TDD.t()}
# | {:has_struct_key, atom()}
# | {:var, String.t()}
# end
#
# # === Type Constraints (structural predicates) ===
#
# defmodule Constraint do
# @moduledoc """
# Represents a structural constraint on a type variable,
# similar to a typeclass in Haskell or trait in Rust, but structural.
# """
#
# defstruct [:kind, :arg]
#
# @type kind ::
# :enumerable
# | :collectable
# | :struct_with_keys
# | :custom
#
# @type t :: %__MODULE__{
# kind: kind(),
# arg: String.t() | TDD.t() | any()
# }
# end
#
# # === Polymorphic Types (forall + constraints) ===
#
# defmodule PolyTDD do
# @moduledoc """
# Represents a polymorphic type with optional structural constraints.
# """
#
# defstruct [:vars, :body]
#
# @type t :: %__MODULE__{
# vars: [Var.t()],
# body: TDD.t()
# }
# end
#
# # === Constants for base types ===
#
# @doc "A TDD representing the universal type (any value)"
# def tdd_any, do: :any
#
# @doc "A TDD representing the empty type (no values)"
# def tdd_none, do: :none
#
# @doc "Creates a TDD for a literal value"
# def tdd_literal(value) do
# %TDD{
# decision: {:literal, value},
# yes: :any,
# no: :none,
# maybe: :none
# }
# end
#
# @doc "Creates a TDD for a base predicate (e.g., is_atom)"
# def tdd_pred(pred) when is_atom(pred) do
# %TDD{
# decision: pred,
# yes: :any,
# no: :none,
# maybe: :none
# }
# end
#
# @doc "Creates a TDD for a type variable reference"
# def tdd_var(name) when is_binary(name) do
# %TDD{
# decision: {:var, name},
# yes: :any,
# no: :none,
# maybe: :none
# }
# end
#
# @doc """
# Performs type variable substitution in a TDD,
# replacing variables found in the given `env` map.
# """
# def tdd_substitute(:any, _env), do: :any
# def tdd_substitute(:none, _env), do: :none
#
# def tdd_substitute(%TDD{decision: {:var, name}}, env) when is_map(env) do
# Map.get(env, name, %TDD{decision: {:var, name}, yes: :any, no: :none, maybe: :none})
# end
#
# def tdd_substitute(%TDD{} = tdd, env) do
# %TDD{
# decision: tdd.decision,
# yes: tdd_substitute(tdd.yes, env),
# no: tdd_substitute(tdd.no, env),
# maybe: tdd_substitute(tdd.maybe, env)
# }
# end
#
# @doc """
# Performs substitution in a polymorphic type, replacing all vars
# in `vars` with given TDDs from `env`.
# """
# def poly_substitute(%PolyTDD{vars: vars, body: body}, env) do
# var_names = Enum.map(vars, & &1.name)
# restricted_env = Map.take(env, var_names)
# tdd_substitute(body, restricted_env)
# end
#
# # === Constraints ===
#
# @doc """
# Checks whether a TDD satisfies a built-in structural constraint,
# such as Enumerable or String.Chars.
# """
# def satisfies_constraint?(tdd, %Constraint{kind: :enumerable}) do
# tdd_is_of_kind?(tdd, [:list, :map, :bitstring])
# end
#
# def satisfies_constraint?(tdd, %Constraint{kind: :string_chars}) do
# tdd_is_of_kind?(tdd, [:bitstring, :atom])
# end
#
# def satisfies_constraint?(_tdd, %Constraint{kind: :custom}) do
# raise "Custom constraints not implemented yet"
# end
#
# # Default fallback: constraint not recognized
# def satisfies_constraint?(_tdd, %Constraint{kind: kind}) do
# raise ArgumentError, "Unknown constraint kind: #{inspect(kind)}"
# end
#
# @doc """
# Checks if a TDD is semantically a subtype of any of the specified kinds.
# Used to approximate constraint satisfaction structurally.
# """
# def tdd_is_of_kind?(:any, _), do: true
# def tdd_is_of_kind?(:none, _), do: false
#
# def tdd_is_of_kind?(%TDD{decision: pred} = tdd, kinds) do
# if pred in kinds do
# # Decision directly confirms kind
# tdd.yes != :none
# else
# # Otherwise we conservatively say "no" unless the TDD is union-like
# false
# end
# end
#
# # === Decision ===
# defmodule Decision do
# @moduledoc """
# A type-level decision predicate used in a TDD node.
# """
#
# @type t ::
# :is_atom
# | :is_integer
# | :is_float
# | :is_binary
# | :is_list
# | :is_tuple
# | :is_map
# # General "is a function"
# | :is_function
# | :is_pid
# | :is_reference
# | {:literal, term()}
# | {:tuple_len, pos_integer()}
# # Type of a map key (used in structural map checks)
# | {:key, TDD.t()}
# | {:has_struct_key, atom()}
# # A type variable name, e.g., "~a"
# | {:var, String.t()}
# # New
# | {:is_function_sig, param_types :: [TDD.t()], return_type :: TDD.t()}
# end
#
# @doc "Creates a TDD for a specific function signature"
# def tdd_function_sig(param_types, return_type)
# when is_list(param_types) and (is_struct(return_type, TDD) or return_type in [:any, :none]) do
# %TDD{
# decision: {:is_function_sig, param_types, return_type},
# # A value matches if it's a function of this signature
# yes: :any,
# no: :none,
# # Maybe it's some other function
# maybe: %TDD{decision: :is_function, yes: :any, no: :none, maybe: :none}
# }
# end
#
# # ... (existing tdd_or, tdd_and, tdd_not, tdd_diff) ...
#
# @doc """
# Performs type variable substitution in a TDD,
# replacing variables found in the given `env` map (var_name -> TDD).
# """
# def tdd_substitute(:any, _env), do: :any
# def tdd_substitute(:none, _env), do: :none
#
# def tdd_substitute(%TDD{decision: {:var, name}} = tdd, env) when is_map(env) do
# # If var 'name' is in env, substitute it. Otherwise, keep the var.
# Map.get(env, name, tdd)
# end
#
# def tdd_substitute(%TDD{decision: {:is_function_sig, params, ret_type}} = tdd, env) do
# # Substitute within the signature parts
# substituted_params = Enum.map(params, &tdd_substitute(&1, env))
# substituted_ret_type = tdd_substitute(ret_type, env)
#
# # Reconstruct the TDD node, keeping yes/no/maybe branches as they are fixed for this predicate.
# # Note: If canonicalization (mk_tdd) were used, this would go through it.
# %TDD{tdd | decision: {:is_function_sig, substituted_params, substituted_ret_type}}
# end
#
# def tdd_substitute(%TDD{decision: {:key, key_type_tdd}} = tdd, env) do
# # Substitute within the key type TDD
# substituted_key_type = tdd_substitute(key_type_tdd, env)
# %TDD{tdd | decision: {:key, substituted_key_type}}
# end
#
# # Generic case for other decisions: substitute in branches
# def tdd_substitute(%TDD{} = tdd, env) do
# %TDD{
# # Assume decision itself doesn't contain substitutable vars unless handled above
# decision: tdd.decision,
# yes: tdd_substitute(tdd.yes, env),
# no: tdd_substitute(tdd.no, env),
# maybe: tdd_substitute(tdd.maybe, env)
# }
# end
#
# @doc """
# Performs substitution in a polymorphic type's body,
# using the provided `env` (var_name -> TDD).
# This substitutes *free* variables in the PolyTDD's body, not its quantified variables.
# To instantiate quantified variables, use `Tilly.Inference.instantiate/3`.
# """
# def poly_substitute_free_vars(%PolyTDD{vars: _quantified_vars, body: body} = poly_tdd, env) do
# # We only substitute variables in the body that are NOT the quantified ones.
# # `env` should ideally not contain keys that are names of quantified variables of this PolyTDD.
# # For simplicity, if env has a quantified var name, it will be shadowed by the quantified var itself.
# # A more robust approach might filter env based on quantified_vars.
# substituted_body = tdd_substitute(body, env)
# %PolyTDD{poly_tdd | body: substituted_body}
# end
#
# @doc "Finds all free type variable names in a TDD."
# def free_vars(:any), do: MapSet.new()
# def free_vars(:none), do: MapSet.new()
#
# def free_vars(%TDD{decision: {:var, name}}) do
# MapSet.new([name])
# end
#
# def free_vars(%TDD{decision: {:is_function_sig, params, ret_type}}) do
# param_fvs = Enum.map(params, &free_vars/1) |> Enum.reduce(MapSet.new(), &MapSet.union/2)
# ret_fvs = free_vars(ret_type)
# MapSet.union(param_fvs, ret_fvs)
# # Note: yes/no/maybe branches for this node are typically :any/:none or simple predicates,
# # but if they could contain vars, they'd need to be included.
# # Current tdd_function_sig has fixed branches.
# end
#
# def free_vars(%TDD{decision: {:key, key_type_tdd}}) do
# free_vars(key_type_tdd)
# # Similar note about yes/no/maybe branches.
# end
#
# def free_vars(%TDD{yes: yes, no: no, maybe: maybe}) do
# MapSet.union(free_vars(yes), MapSet.union(free_vars(no), free_vars(maybe)))
# end
#
# # Helper for PolyTDD free vars (vars free in body that are not quantified)
# def free_vars_in_poly_tdd_body(%PolyTDD{vars: quantified_vars_list, body: body}) do
# quantified_names = Enum.map(quantified_vars_list, & &1.name) |> MapSet.new()
# body_fvs = free_vars(body)
# MapSet.difference(body_fvs, quantified_names)
# end
# end
#
# defmodule Tilly.Inference do
# alias Tilly.Type
# alias Tilly.Type.{TDD, Var, PolyTDD, Constraint}
#
# @typedoc "Type environment: maps variable names (atoms) to their types (TDD or PolyTDD)"
# @type type_env :: %{atom() => TDD.t() | PolyTDD.t()}
#
# @typedoc "Substitution map: maps type variable names (strings) to TDDs"
# @type substitution :: %{String.t() => TDD.t()}
#
# @typedoc "Constraints collected during inference: {type_var_name, constraint}"
# @type collected_constraints :: [{String.t(), Constraint.t()}]
#
# @typedoc """
# Result of inference for an expression:
# - inferred_type: The TDD or PolyTDD type of the expression.
# - var_counter: The updated counter for generating fresh type variables.
# - substitution: The accumulated substitution map.
# - constraints: Constraints that need to be satisfied.
# """
# @type infer_result ::
# {inferred_type :: TDD.t() | PolyTDD.t(), var_counter :: non_neg_integer(),
# substitution :: substitution(), constraints :: collected_constraints()}
#
# # --- Helper for Fresh Type Variables ---
# defmodule FreshVar do
# @doc "Generates a new type variable name and increments the counter."
# @spec next(non_neg_integer()) :: {String.t(), non_neg_integer()}
# def next(counter) do
# new_var_name = "~t" <> Integer.to_string(counter)
# {new_var_name, counter + 1}
# end
# end
#
# # --- Core Inference Function ---
#
# @doc "Infers the type of a Tilly expression."
# @spec infer(
# expr :: term(),
# env :: type_env(),
# var_counter :: non_neg_integer(),
# sub :: substitution()
# ) ::
# infer_result()
# def infer({:lit, val}, _env, var_counter, sub) do
# type =
# cond do
# # More precise: Type.tdd_literal(val)
# is_atom(val) -> Type.tdd_pred(:is_atom)
# # Type.tdd_literal(val)
# is_integer(val) -> Type.tdd_pred(:is_integer)
# # Type.tdd_literal(val)
# is_float(val) -> Type.tdd_pred(:is_float)
# # Type.tdd_literal(val)
# is_binary(val) -> Type.tdd_pred(:is_binary)
# # Add other literals as needed
# # Fallback for other kinds of literals
# true -> Type.tdd_literal(val)
# end
#
# {type, var_counter, sub, []}
# end
#
# def infer({:var, name}, env, var_counter, sub) when is_atom(name) do
# case Map.get(env, name) do
# nil ->
# raise "Unbound variable: #{name}"
#
# %TDD{} = tdd_type ->
# {Type.tdd_substitute(tdd_type, sub), var_counter, sub, []}
#
# %PolyTDD{} = poly_type ->
# {instantiated_type, new_var_counter, new_constraints} =
# instantiate(poly_type, var_counter)
#
# # Apply current substitution to the instantiated type
# # (in case fresh vars from instantiation are already in sub from elsewhere)
# final_type = Type.tdd_substitute(instantiated_type, sub)
# {final_type, new_var_counter, sub, new_constraints}
# end
# end
#
# def infer({:fn, param_atoms, body_expr}, env, var_counter, sub) when is_list(param_atoms) do
# # 1. Create fresh type variables for parameters
# {param_tdd_vars, extended_env, counter_after_params} =
# Enum.reduce(param_atoms, {[], env, var_counter}, fn param_name,
# {vars_acc, env_acc, c_acc} ->
# {fresh_var_name, next_c} = FreshVar.next(c_acc)
# param_tdd_var = Type.tdd_var(fresh_var_name)
# {[param_tdd_var | vars_acc], Map.put(env_acc, param_name, param_tdd_var), next_c}
# end)
#
# param_types = Enum.reverse(param_tdd_vars)
#
# # 2. Infer body with extended environment and current substitution
# {body_type_raw, counter_after_body, sub_after_body, body_constraints} =
# infer(body_expr, extended_env, counter_after_params, sub)
#
# # 3. Apply the substitution from body inference to parameter types
# # This is because unification within the body might refine what the param types can be.
# final_param_types = Enum.map(param_types, &Type.tdd_substitute(&1, sub_after_body))
# # Already applied in infer usually
# final_body_type = Type.tdd_substitute(body_type_raw, sub_after_body)
#
# # 4. Construct function type
# fun_type = Type.tdd_function_sig(final_param_types, final_body_type)
# {fun_type, counter_after_body, sub_after_body, body_constraints}
# end
#
# def infer({:app, fun_expr, arg_exprs}, env, var_counter, sub) when is_list(arg_exprs) do
# # 1. Infer function expression
# {fun_type_raw, c1, s1, fun_constraints} = infer(fun_expr, env, var_counter, sub)
# # Apply substitutions so far
# fun_type_template = Type.tdd_substitute(fun_type_raw, s1)
#
# # 2. Infer argument expressions
# {arg_types_raw, c2, s2, args_constraints_lists} =
# Enum.map_reduce(arg_exprs, {c1, s1}, fn arg_expr, {c_acc, s_acc} ->
# {arg_t, next_c, next_s, arg_c} = infer(arg_expr, env, c_acc, s_acc)
# # Pass along type and its constraints
# {{arg_t, arg_c}, {next_c, next_s}}
# end)
#
# actual_arg_types = Enum.map(arg_types_raw, fn {t, _cs} -> Type.tdd_substitute(t, s2) end)
# all_arg_constraints = Enum.flat_map(arg_types_raw, fn {_t, cs} -> cs end) ++ fun_constraints
#
# # 3. Unify/Match function type with arguments
# # `fun_type_template` is the type of the function (e.g., {:var, "~f"} or an actual fn_sig)
# # `s2` is the current global substitution.
# {return_type_final, c3, s3, unification_constraints} =
# unify_apply(fun_type_template, actual_arg_types, c2, s2)
#
# {return_type_final, c3, s3, all_arg_constraints ++ unification_constraints}
# end
#
# def infer({:let, [{var_name, val_expr}], body_expr}, env, var_counter, sub) do
# # 1. Infer the type of the value expression
# {val_type_raw, c1, s1, val_constraints} = infer(val_expr, env, var_counter, sub)
#
# # 2. Apply current substitution and generalize the value's type
# # Generalization happens *before* adding to env, over variables free in val_type but not env.
# # The substitution `s1` contains all refinements up to this point.
# val_type_substituted = Type.tdd_substitute(val_type_raw, s1)
# generalized_val_type = generalize(val_type_substituted, env, s1)
#
# # 3. Extend environment and infer body
# extended_env = Map.put(env, var_name, generalized_val_type)
# # Use s1 for body too
# {body_type_raw, c2, s2, body_constraints} = infer(body_expr, extended_env, c1, s1)
#
# # The final substitution s2 incorporates s1 and any changes from body.
# # The final body_type is already substituted by s2.
# {body_type_raw, c2, s2, val_constraints ++ body_constraints}
# end
#
# # --- Polymorphism: Instantiation and Generalization ---
#
# @doc "Instantiates a polymorphic type scheme by replacing quantified variables with fresh ones."
# def instantiate(%PolyTDD{vars: poly_vars_list, body: body_tdd}, var_counter) do
# # Create substitution map from quantified vars to fresh vars
# {substitution_to_fresh, new_var_counter, new_constraints} =
# Enum.reduce(poly_vars_list, {%{}, var_counter, []}, fn %Var{
# name: q_name,
# constraints: q_constraints
# },
# {sub_acc, c_acc, cons_acc} ->
# {fresh_name, next_c} = FreshVar.next(c_acc)
# fresh_tdd_var = Type.tdd_var(fresh_name)
# # Associate constraints of the quantified var with the new fresh var
# # Tie constraint to fresh var name
# fresh_var_constraints = Enum.map(q_constraints, &%Constraint{&1 | arg: fresh_name})
# {Map.put(sub_acc, q_name, fresh_tdd_var), next_c, cons_acc ++ fresh_var_constraints}
# end)
#
# instantiated_body = Type.tdd_substitute(body_tdd, substitution_to_fresh)
# {instantiated_body, new_var_counter, new_constraints}
# end
#
# @doc "Generalizes a TDD type into a PolyTDD if it has free variables not in the environment."
# def generalize(type_tdd, env, current_sub) do
# # Apply current substitution to resolve any vars in type_tdd that are already determined
# type_to_generalize = Type.tdd_substitute(type_tdd, current_sub)
#
# env_free_vars =
# env
# |> Map.values()
# |> Enum.map(&apply_sub_and_get_free_vars(&1, current_sub))
# |> Enum.reduce(MapSet.new(), &MapSet.union/2)
#
# type_free_vars_set = Type.free_vars(type_to_generalize)
#
# vars_to_quantify_names = MapSet.difference(type_free_vars_set, env_free_vars)
#
# if MapSet.size(vars_to_quantify_names) == 0 do
# # No variables to quantify, return as is
# type_to_generalize
# else
# quantified_vars_structs =
# Enum.map(MapSet.to_list(vars_to_quantify_names), fn var_name ->
# # For now, generalized variables have no attached constraints here.
# # Constraints arise from usage and are checked later.
# %Var{name: var_name, constraints: []}
# end)
#
# %PolyTDD{vars: quantified_vars_structs, body: type_to_generalize}
# end
# end
#
# defp apply_sub_and_get_free_vars(%TDD{} = tdd, sub) do
# Type.tdd_substitute(tdd, sub) |> Type.free_vars()
# end
#
# defp apply_sub_and_get_free_vars(%PolyTDD{} = poly_tdd, sub) do
# # For a PolyTDD in the env, we care about its free variables *after* substitution,
# # excluding its own quantified variables.
# # Substitutes free vars in body
# Type.poly_substitute_free_vars(poly_tdd, sub)
# |> Type.free_vars_in_poly_tdd_body()
# end
#
# # --- Unification (Simplified for now) ---
#
# @doc """
# Constrains variables in t1 and t2 to be compatible and updates the substitution.
# If t1 is Var(~a) and t2 is Type T, then ~a's bound becomes current_bound(~a) & T.
# If t1 and t2 are concrete, checks their intersection isn't None.
# Returns new substitution. Throws on error.
# """
# def constrain_and_update_sub(raw_t1, raw_t2, sub) do
# # IO.inspect({:constrain_start, raw_t1, raw_t2, sub}, label: "CONSTRAIN")
# t1 = tdd_substitute(raw_t1, sub)
# t2 = tdd_substitute(raw_t2, sub)
# # IO.inspect({:constrain_applied, t1, t2}, label: "CONSTRAIN")
#
# cond do
# # Identical or one is Any (Any & T = T, so effectively no new constraint on T if T is a var already refined from Any)
# t1 == t2 ->
# sub
#
# # Effectively constrains t2 if it's a var
# t1 == Type.tdd_any() ->
# constrain_var_with_type(t2, t1, sub)
#
# # Effectively constrains t1 if it's a var
# t2 == Type.tdd_any() ->
# constrain_var_with_type(t1, t2, sub)
#
# # Case 1: t1 is a variable
# %TDD{decision: {:var, v_name1}} = t1 ->
# update_var_bound(v_name1, t2, sub, raw_t1, raw_t2)
#
# # Case 2: t2 is a variable (and t1 is not)
# %TDD{decision: {:var, v_name2}} = t2 ->
# # Note order for error message
# update_var_bound(v_name2, t1, sub, raw_t2, raw_t1)
#
# # Case 3: Both are function signatures (concrete)
# %TDD{decision: {:is_function_sig, params1, ret1}} = t1,
# %TDD{decision: {:is_function_sig, params2, ret2}} = t2 ->
# if length(params1) != length(params2) do
# raise "Type error (constrain): Function arity mismatch between #{inspect(t1)} and #{inspect(t2)}"
# end
#
# # For two function *types* to be compatible/substitutable, their parameters are contravariant, return is covariant.
# # However, if we are "unifying" them to be *the same type structure*, then params are covariant.
# # Let's assume for now `constrain_and_update_sub` implies they should be "equal or compatible via intersection".
# # This means their intersection should be non-None, and vars within them get constrained.
#
# sub_after_params =
# Enum.zip(params1, params2)
# |> Enum.reduce(sub, fn {p1, p2}, acc_sub ->
# # Params are "unified" directly
# constrain_and_update_sub(p1, p2, acc_sub)
# end)
#
# # Return types are "unified" directly
# constrain_and_update_sub(ret1, ret2, sub_after_params)
#
# # TODO: Add cases for Tuples, Lists, TDDMap
# # For tuples: length must match, then constrain_and_update_sub elements pairwise.
# # %TDD{decision: {:is_tuple, len1}, yes: elements_tdd1} ...
# # This requires TDDs to encode tuple elements more directly if we want to unify structurally.
# # Current TDD for tuple is just {:tuple_len, N} or general :is_tuple. We need richer TDDs for structural unification.
# # For now, this fallback will handle simple tuple predicates.
#
# # Case 4: Other concrete types.
# true ->
# intersection = tdd_and(t1, t2)
#
# if intersection == Type.tdd_none() do
# raise "Type error (constrain): Types #{inspect(t1)} (from #{inspect(raw_t1)}) and #{inspect(t2)} (from #{inspect(raw_t2)}) are incompatible (intersection is empty). Current sub: #{inspect(sub)}"
# end
#
# # If they are concrete and compatible, `sub` is unchanged at this level.
# sub
# end
#
# defp constrain_var_with_type(%TDD{decision: {:var, v_name}} = var_tdd, other_type, sub) do
# # raw_t1, raw_t2 are for error msg context
# update_var_bound(v_name, other_type, sub, var_tdd, other_type)
# end
#
# # No var, no sub change here
# defp constrain_var_with_type(_concrete_type, _other_type, sub), do: sub
#
# defp update_var_bound(v_name, constraining_type, sub, raw_var_form, raw_constraining_form) do
# # Default to Any
# current_bound_v = Map.get(sub, v_name, Type.tdd_any())
# new_bound_v = Type.tdd_and(current_bound_v, constraining_type)
#
# if new_bound_v == Type.tdd_none() do
# original_var_constraint_str =
# if raw_var_form != constraining_type,
# do: "(from unifying with #{inspect(raw_constraining_form)})",
# else: ""
#
# raise "Type error: Constraining variable #{v_name} with #{inspect(constraining_type)} #{original_var_constraint_str} results in an empty type. Previous bound: #{inspect(current_bound_v)}. Current sub: #{inspect(sub)}"
# end
#
# Map.put(sub, v_name, new_bound_v)
# end
#
# @doc """
# Handles the application of a function type to actual argument types.
# `fun_type_template` is the (possibly variable) type of the function.
# `actual_arg_types` are the TDDs of the arguments.
# `var_counter` and `sub` are current state.
# Returns `{final_return_type, new_counter, new_sub, new_constraints}`.
# """
# def unify_apply(fun_type_template, actual_arg_types, var_counter, sub) do
# # Apply current substitutions to fun_type_template
# current_fun_type = Type.tdd_substitute(fun_type_template, sub)
#
# case current_fun_type do
# %TDD{decision: {:var, fun_var_name}} ->
# # Function is a type variable. We need to unify it with a newly minted function signature.
# {param_var_tds, c1} =
# Enum.map_reduce(actual_arg_types, var_counter, fn _arg, c_acc ->
# {fresh_name, next_c} = FreshVar.next(c_acc)
# {Type.tdd_var(fresh_name), next_c}
# end)
#
# {return_var_name, c2} = FreshVar.next(c1)
# return_var_tdd = Type.tdd_var(return_var_name)
#
# # The new signature that fun_var_name must conform to
# synthetic_fun_sig_tdd = Type.tdd_function_sig(param_var_tds, return_var_tdd)
#
# # Unify the function variable with this synthetic signature
# {s1, cons1} = unify(current_fun_type, synthetic_fun_sig_tdd, sub)
#
# # Now unify actual arguments with the fresh parameter type variables
# {s2, cons2_list} =
# Enum.zip(actual_arg_types, param_var_tds)
# |> Enum.reduce({s1, []}, fn {actual_arg_t, param_var_t}, {s_acc, c_acc_list} ->
# {next_s, next_cs} = unify(actual_arg_t, param_var_t, s_acc)
# {next_s, [next_cs | c_acc_list]}
# end)
#
# final_return_type = Type.tdd_substitute(return_var_tdd, s2)
# {final_return_type, c2, s2, cons1 ++ List.flatten(cons2_list)}
#
# %TDD{decision: {:is_function_sig, expected_param_types, expected_return_type}} ->
# # Function is a known signature.
# if length(actual_arg_types) != length(expected_param_types) do
# raise "Arity mismatch: expected #{length(expected_param_types)}, got #{length(actual_arg_types)}"
# end
#
# # Unify actual arguments with expected parameter types
# {s1, constraints_from_params_list} =
# Enum.zip(actual_arg_types, expected_param_types)
# |> Enum.reduce({sub, []}, fn {actual_arg_t, expected_param_t}, {s_acc, c_acc_list} ->
# {next_s, param_cs} = unify(actual_arg_t, expected_param_t, s_acc)
# {next_s, [param_cs | c_acc_list]}
# end)
#
# final_return_type = Type.tdd_substitute(expected_return_type, s1)
# {final_return_type, var_counter, s1, List.flatten(constraints_from_params_list)}
#
# other_type ->
# raise "Type error: expected a function, but got #{inspect(other_type)}"
# end
# end
#
# @doc "Top-level type checking function for a Tilly program (list of expressions)."
# def typecheck_program(exprs, initial_env \\ %{}) do
# # For a program, we can infer each top-level expression.
# # For `def`s, they would add to the environment.
# # For now, let's just infer a single expression.
# # A real program would involve modules, defs, etc.
# initial_var_counter = 0
# initial_substitution = %{}
#
# # This is a simplified entry point, inferring a single expression
# # A full program checker would iterate, manage top-level defs, etc.
# if is_list(exprs) and Enum.count(exprs) == 1 do
# [main_expr] = exprs
#
# {raw_type, _counter, final_sub, constraints} =
# infer(main_expr, initial_env, initial_var_counter, initial_substitution)
#
# final_type = Type.tdd_substitute(raw_type, final_sub)
# # Here, you would solve/check `constraints` using `final_sub`
# # For example:
# Enum.each(constraints, fn {var_name, constraint_obj} ->
# var_final_type = Map.get(final_sub, var_name, Type.tdd_var(var_name))
#
# unless Type.satisfies_constraint?(var_final_type, constraint_obj) do
# raise "Constraint #{inspect(constraint_obj)} not satisfied for #{var_name} (type #{inspect(var_final_type)})"
# end
# end)
#
# {:ok, final_type, final_sub}
# else
# # Placeholder for multi-expression program handling
# {:error, "Program must be a single expression for now"}
# end
# end
# end
# end