2376 lines
78 KiB
Elixir
2376 lines
78 KiB
Elixir
defmodule Tdd.TypeSpec do
|
|
@moduledoc """
|
|
Defines the `TypeSpec` structure and functions for its manipulation.
|
|
|
|
A `TypeSpec` is a stable, structural, and declarative representation of a type.
|
|
It serves as the primary language for defining and interacting with types in the
|
|
higher-level system, abstracting away the underlying TDD implementation.
|
|
|
|
All `TypeSpec`s should be passed through `normalize/1` before being used in
|
|
caching or compilation to ensure a canonical representation.
|
|
"""
|
|
|
|
@typedoc "A stable, structural representation of a type."
|
|
# --- Core Types ---
|
|
@type t ::
|
|
:any
|
|
| :none
|
|
| :atom
|
|
| :integer
|
|
| :list
|
|
| :tuple
|
|
# (Add :binary, :function, :pid, etc. here as they are implemented)
|
|
|
|
# --- Literal Value Type ---
|
|
| {:literal, term()}
|
|
|
|
# --- Set-Theoretic Combinators ---
|
|
# Note: The `normalize/1` function guarantees that the lists in
|
|
# :union and :intersect are sorted, unique, and flattened.
|
|
| {:union, [t()]}
|
|
| {:intersect, [t()]}
|
|
| {:negation, t()}
|
|
|
|
# --- Parameterized Structural Types ---
|
|
| {:tuple, [t()]}
|
|
| {:cons, head :: t(), tail :: t()}
|
|
| {:list_of, element :: t()}
|
|
|
|
# --- Integer Range (Example of property-based type) ---
|
|
| {:integer_range, min :: integer() | :neg_inf, max :: integer() | :pos_inf}
|
|
|
|
# --- For Polymorphism (Future Use) ---
|
|
| {:type_var, atom()}
|
|
|
|
@doc """
|
|
Converts a `TypeSpec` into its canonical (normalized) form.
|
|
|
|
Normalization is crucial for reliable caching and simplifying downstream logic.
|
|
It performs several key operations:
|
|
|
|
1. **Flattens nested unions and intersections:**
|
|
`{:union, [A, {:union, [B, C]}]}` becomes `{:union, [A, B, C]}`.
|
|
|
|
2. **Sorts and uniqs members of unions and intersections:**
|
|
`{:union, [C, A, A]}` becomes `{:union, [A, C]}`.
|
|
|
|
3. **Applies logical simplification rules (idempotency, annihilation):**
|
|
- `A | A` -> `A`
|
|
- `A | none` -> `A`
|
|
- `A & any` -> `A`
|
|
- `A & none` -> `none`
|
|
- `A | any` -> `any`
|
|
- `¬(¬A)` -> `A`
|
|
- An intersection containing both `A` and `¬A` simplifies. (This is
|
|
better handled by the TDD compiler, but basic checks can happen here).
|
|
|
|
4. **Recursively normalizes all sub-specs.**
|
|
"""
|
|
@spec normalize(t()) :: t()
|
|
def normalize(spec) do
|
|
case spec do
|
|
# Base cases are unchanged
|
|
s when is_atom(s) -> s
|
|
{:literal, _} -> spec
|
|
{:type_var, _} -> spec
|
|
# Recursive cases now call helper functions
|
|
{:negation, sub_spec} -> normalize_negation(sub_spec)
|
|
{:tuple, elements} -> {:tuple, Enum.map(elements, &normalize/1)}
|
|
{:cons, head, tail} -> {:cons, normalize(head), normalize(tail)}
|
|
{:list_of, element} -> {:list_of, normalize(element)}
|
|
# A new rule for integer ranges
|
|
{:integer_range, min, max} -> normalize_integer_range(min, max)
|
|
{:union, members} -> normalize_union(members)
|
|
{:intersect, members} -> normalize_intersection(members)
|
|
end
|
|
end
|
|
|
|
# ------------------------------------------------------------------
|
|
# Private Normalization Helpers
|
|
# ------------------------------------------------------------------
|
|
|
|
defp normalize_negation(sub_spec) do
|
|
normalized_sub = normalize(sub_spec)
|
|
|
|
case normalized_sub do
|
|
# ¬(¬A) -> A
|
|
{:negation, inner_spec} -> inner_spec
|
|
:any -> :none
|
|
:none -> :any
|
|
_ -> {:negation, normalized_sub}
|
|
end
|
|
end
|
|
|
|
defp normalize_integer_range(min, max) do
|
|
# An invalid range simplifies to `none`.
|
|
if is_integer(min) and is_integer(max) and min > max do
|
|
:none
|
|
else
|
|
# An intersection with integer is implied, so we add it for canonical form.
|
|
{:intersect, [:integer, {:integer_range, min, max}]}
|
|
end
|
|
end
|
|
|
|
defp normalize_union(members) do
|
|
# 1. Recursively normalize and flatten members
|
|
normalized_and_flattened =
|
|
Enum.flat_map(members, fn member ->
|
|
normalized = normalize(member)
|
|
|
|
case normalized,
|
|
do:
|
|
(
|
|
{:union, sub_members} -> sub_members
|
|
_ -> [normalized]
|
|
)
|
|
end)
|
|
|
|
# 2. Apply simplification rules
|
|
simplified_members =
|
|
normalized_and_flattened
|
|
# A | none -> A
|
|
|> Enum.reject(&(&1 == :none))
|
|
|> MapSet.new()
|
|
|
|
if MapSet.member?(simplified_members, :any) do
|
|
# A | any -> any
|
|
:any
|
|
else
|
|
# 3. NEW: Reduce by removing subtypes
|
|
# If we have {A, B} and A <: B, the union is just B. So we keep only supersets.
|
|
# We achieve this by removing any member that is a subtype of another member.
|
|
reduced_members =
|
|
Enum.reject(simplified_members, fn member_to_check ->
|
|
Enum.any?(simplified_members, fn other_member ->
|
|
member_to_check != other_member and is_subtype?(member_to_check, other_member)
|
|
end)
|
|
end)
|
|
|
|
# 4. Finalize the structure
|
|
case reduced_members do
|
|
[] -> :none
|
|
[single_member] -> single_member
|
|
list -> {:union, Enum.sort(list)}
|
|
end
|
|
end
|
|
end
|
|
|
|
defp normalize_intersection(members) do
|
|
IO.inspect("Normalize intersection")
|
|
# 1. Recursively normalize and flatten, but also add implied supertypes
|
|
normalized_and_flattened =
|
|
Enum.flat_map(members, fn member ->
|
|
IO.inspect(member, label: "normalize member")
|
|
normalized = normalize(member)
|
|
# Expand a type into itself and its implied supertypes
|
|
# e.g., `:foo` becomes `[:foo, :atom]`
|
|
expanded =
|
|
case normalized do
|
|
{:intersect, sub_members} -> sub_members
|
|
_ -> get_supertypes(normalized)
|
|
end
|
|
|
|
expanded
|
|
end)
|
|
|
|
# 2. Apply simplification rules
|
|
simplified_members =
|
|
normalized_and_flattened
|
|
# A & any -> A
|
|
|> Enum.reject(&(&1 == :any))
|
|
|> MapSet.new()
|
|
|
|
if MapSet.member?(simplified_members, :none) do
|
|
# A & none -> none
|
|
:none
|
|
else
|
|
# 3. NEW: Reduce by removing supertypes
|
|
IO.inspect("Reduce by removing supertypes")
|
|
# If we have {A, B} and A <: B, the intersection is just A. So we keep only subsets.
|
|
# We achieve this by removing any member for which a proper subtype exists in the set.
|
|
reduced_members =
|
|
Enum.reject(simplified_members, fn member_to_check ->
|
|
Enum.any?(simplified_members, fn other_member ->
|
|
member_to_check != other_member and is_subtype?(other_member, member_to_check)
|
|
end)
|
|
end)
|
|
|
|
# 4. Finalize the structure
|
|
IO.inspect("4. Finalize the structure")
|
|
|
|
case reduced_members do
|
|
[] -> :any
|
|
[single_member] -> single_member
|
|
list -> {:intersect, Enum.sort(list)}
|
|
end
|
|
end
|
|
end
|
|
|
|
# ------------------------------------------------------------------
|
|
# Private Semantic Helpers
|
|
# ------------------------------------------------------------------
|
|
|
|
@doc """
|
|
A preliminary, non-TDD check if `spec1` is a subtype of `spec2`.
|
|
|
|
This check is not exhaustive but covers many common, structural cases,
|
|
allowing for significant simplification at the `TypeSpec` level.
|
|
"""
|
|
@spec is_subtype?(t(), t()) :: boolean
|
|
def is_subtype?(spec1, spec2) do
|
|
# Avoid infinite recursion by not re-normalizing.
|
|
# The callers are assumed to be working with normalized data.
|
|
# Base cases are handled first for efficiency.
|
|
cond do
|
|
spec1 == spec2 -> true
|
|
spec1 == :none -> true
|
|
spec2 == :any -> true
|
|
spec1 == :any or spec2 == :none -> false
|
|
# Defer to pattern-matching helper
|
|
true -> do_is_subtype?(spec1, spec2)
|
|
end
|
|
end
|
|
|
|
# Private helper that uses `case` for proper pattern matching.
|
|
defp do_is_subtype?(spec1, spec2) do
|
|
case {spec1, spec2} do
|
|
# --- Set-theoretic rules ---
|
|
|
|
# (A | B) <: C if A <: C and B <: C
|
|
{{:union, members1}, _} ->
|
|
Enum.all?(members1, &is_subtype?(&1, spec2))
|
|
|
|
# A <: (B | C) if A <: B or A <: C
|
|
{_, {:union, members2}} ->
|
|
Enum.any?(members2, &is_subtype?(spec1, &1))
|
|
|
|
# (A & B) <: C if A <: C or B <: C
|
|
{{:intersect, members1}, _} ->
|
|
Enum.any?(members1, &is_subtype?(&1, spec2))
|
|
|
|
# A <: (B & C) if A <: B and A <: C
|
|
{_, {:intersect, members2}} ->
|
|
Enum.all?(members2, &is_subtype?(spec1, &1))
|
|
|
|
# --- Literal and Base Type Rules ---
|
|
{s1, s2} when is_atom(s1) and is_atom(s2) ->
|
|
s1 == s2
|
|
|
|
{{:literal, v1}, {:literal, v2}} ->
|
|
v1 == v2
|
|
|
|
{{:literal, val}, :atom} when is_atom(val) ->
|
|
true
|
|
|
|
{{:literal, val}, :integer} when is_integer(val) ->
|
|
true
|
|
|
|
{{:literal, val}, :list} when is_list(val) ->
|
|
true
|
|
|
|
{{:literal, val}, :tuple} when is_tuple(val) ->
|
|
true
|
|
|
|
# --- List and Cons Rules ---
|
|
{{:literal, []}, :list} ->
|
|
true
|
|
|
|
{{:cons, _, _}, :list} ->
|
|
true
|
|
|
|
{{:list_of, _}, :list} ->
|
|
true
|
|
|
|
{{:cons, h1, t1}, {:cons, h2, t2}} ->
|
|
is_subtype?(h1, h2) and is_subtype?(t1, t2)
|
|
|
|
{{:list_of, e1}, {:list_of, e2}} ->
|
|
is_subtype?(e1, e2)
|
|
|
|
{{:cons, h, t}, {:list_of, x}} ->
|
|
is_subtype?(h, x) and is_subtype?(t, {:list_of, x})
|
|
|
|
{{:literal, []}, {:list_of, _}} ->
|
|
true
|
|
|
|
# --- Tuple Rules ---
|
|
{{:literal, {}}, :tuple} ->
|
|
true
|
|
|
|
{{:tuple, _}, :tuple} ->
|
|
true
|
|
|
|
{{:tuple, elems1}, {:tuple, elems2}} when length(elems1) == length(elems2) ->
|
|
Enum.zip_with(elems1, elems2, &is_subtype?/2) |> Enum.all?()
|
|
|
|
# --- Integer Range Rules ---
|
|
{{:integer_range, _, _}, :integer} ->
|
|
true
|
|
|
|
{{:integer_range, min1, max1}, {:integer_range, min2, max2}} ->
|
|
min1_gte_min2 = if min1 == :neg_inf, do: true, else: min2 != :neg_inf and min1 >= min2
|
|
max1_lte_max2 = if max1 == :pos_inf, do: true, else: max2 != :pos_inf and max1 <= max2
|
|
min1_gte_min2 and max1_lte_max2
|
|
|
|
{{:literal, val}, {:integer_range, min, max}} when is_integer(val) ->
|
|
(min == :neg_inf or val >= min) and (max == :pos_inf or val <= max)
|
|
|
|
# --- Default fallback ---
|
|
# If no specific rule matches, they are not considered subtypes.
|
|
{_, _} ->
|
|
false
|
|
end
|
|
end
|
|
|
|
# Gets a list of immediate, known supertypes for a given simple spec.
|
|
defp get_supertypes(spec) do
|
|
supertypes =
|
|
case spec do
|
|
{:literal, val} when is_atom(val) -> [:atom]
|
|
{:literal, val} when is_integer(val) -> [:integer]
|
|
{:literal, val} when is_list(val) -> [:list]
|
|
{:literal, val} when is_tuple(val) -> [:tuple]
|
|
{:cons, _, _} -> [:list]
|
|
{:list_of, _} -> [:list]
|
|
{:tuple, _} -> [:tuple]
|
|
{:integer_range, _, _} -> [:integer]
|
|
_ -> []
|
|
end
|
|
|
|
# Use a MapSet to ensure the spec and its supertypes are unique.
|
|
MapSet.to_list(MapSet.new([spec | supertypes]))
|
|
end
|
|
end
|
|
|
|
defmodule Tdd.Store do
|
|
@moduledoc """
|
|
Manages the state of the TDD system's node graph and operation cache.
|
|
|
|
This module acts as the stateful backend for the TDD algorithms. It is
|
|
responsible for creating unique, shared nodes (ensuring structural canonicity)
|
|
and for memoizing the results of expensive operations.
|
|
|
|
It is intentionally agnostic about the *meaning* of the variables within the
|
|
nodes; it treats them as opaque, comparable terms. The logic for interpreting
|
|
these variables resides in higher-level modules like `Tdd.Algo` and
|
|
`Tdd.Consistency.Engine`.
|
|
|
|
For simplicity, this implementation uses the Process dictionary for state.
|
|
In a production, concurrent application, this would be replaced by a `GenServer`
|
|
to ensure safe, serialized access to the shared TDD state.
|
|
"""
|
|
|
|
# --- State Keys ---
|
|
@nodes_key :tdd_nodes
|
|
@node_by_id_key :tdd_node_by_id
|
|
@next_id_key :tdd_next_id
|
|
@op_cache_key :tdd_op_cache
|
|
|
|
# --- Terminal Node IDs ---
|
|
@false_node_id 0
|
|
@true_node_id 1
|
|
|
|
# --- Public API ---
|
|
|
|
@doc "Initializes the TDD store in the current process."
|
|
def init do
|
|
# The main lookup table: {variable, y, n, d} -> id
|
|
Process.put(@nodes_key, %{})
|
|
|
|
# The reverse lookup table: id -> {variable, y, n, d} or :terminal
|
|
Process.put(@node_by_id_key, %{
|
|
@false_node_id => :false_terminal,
|
|
@true_node_id => :true_terminal
|
|
})
|
|
|
|
# The next available integer ID for a new node.
|
|
Process.put(@next_id_key, 2)
|
|
|
|
# The cache for memoizing operation results: {op, args} -> id
|
|
Process.put(@op_cache_key, %{})
|
|
:ok
|
|
end
|
|
|
|
@doc "Returns the ID for the TRUE terminal node (the 'any' type)."
|
|
@spec true_node_id() :: non_neg_integer()
|
|
def true_node_id, do: @true_node_id
|
|
|
|
@doc "Returns the ID for the FALSE terminal node (the 'none' type)."
|
|
@spec false_node_id() :: non_neg_integer()
|
|
def false_node_id, do: @false_node_id
|
|
|
|
@doc "Retrieves the details of a node by its ID."
|
|
@spec get_node(non_neg_integer()) ::
|
|
{:ok,
|
|
{variable :: term(), yes_id :: non_neg_integer(), no_id :: non_neg_integer(),
|
|
dc_id :: non_neg_integer()}}
|
|
| {:ok, :true_terminal | :false_terminal}
|
|
| {:error, :not_found}
|
|
def get_node(id) do
|
|
case Process.get(@node_by_id_key, %{}) do
|
|
%{^id => details} -> {:ok, details}
|
|
%{} -> {:error, :not_found}
|
|
end
|
|
end
|
|
|
|
@doc """
|
|
Finds an existing node that matches the structure or creates a new one.
|
|
|
|
This is the core function for ensuring structural sharing (part of the "Reduced"
|
|
property of ROBDDs). It also implements a fundamental reduction rule: if all
|
|
children of a node are identical, the node is redundant and is replaced by
|
|
its child.
|
|
"""
|
|
@spec find_or_create_node(
|
|
variable :: term(),
|
|
yes_id :: non_neg_integer(),
|
|
no_id :: non_neg_integer(),
|
|
dc_id :: non_neg_integer()
|
|
) :: non_neg_integer()
|
|
def find_or_create_node(variable, yes_id, no_id, dc_id) do
|
|
# Basic reduction rule: a node whose test is irrelevant is redundant.
|
|
if yes_id == no_id && yes_id == dc_id do
|
|
yes_id
|
|
else
|
|
node_tuple = {variable, yes_id, no_id, dc_id}
|
|
nodes = Process.get(@nodes_key, %{})
|
|
|
|
case Map.get(nodes, node_tuple) do
|
|
# Node already exists, return its ID for structural sharing.
|
|
id when is_integer(id) ->
|
|
id
|
|
|
|
# Node does not exist, create it.
|
|
nil ->
|
|
next_id = Process.get(@next_id_key)
|
|
node_by_id = Process.get(@node_by_id_key)
|
|
|
|
# Update all state tables
|
|
Process.put(@nodes_key, Map.put(nodes, node_tuple, next_id))
|
|
Process.put(@node_by_id_key, Map.put(node_by_id, next_id, node_tuple))
|
|
Process.put(@next_id_key, next_id + 1)
|
|
|
|
next_id
|
|
end
|
|
end
|
|
end
|
|
|
|
@doc "Retrieves a result from the operation cache."
|
|
@spec get_op_cache(term()) :: {:ok, term()} | :not_found
|
|
def get_op_cache(cache_key) do
|
|
case Process.get(@op_cache_key, %{}) do
|
|
%{^cache_key => result} -> {:ok, result}
|
|
%{} -> :not_found
|
|
end
|
|
end
|
|
|
|
@doc "Puts a result into the operation cache."
|
|
@spec put_op_cache(term(), term()) :: :ok
|
|
def put_op_cache(cache_key, result) do
|
|
# Using `get_and_update_in` would be safer but this is fine for this context.
|
|
cache = Process.get(@op_cache_key, %{})
|
|
Process.put(@op_cache_key, Map.put(cache, cache_key, result))
|
|
:ok
|
|
end
|
|
end
|
|
|
|
defmodule Tdd.Variable do
|
|
@moduledoc """
|
|
Defines the canonical structure for all Tdd predicate variables.
|
|
|
|
The structure `{category, predicate, value, padding}` is used to enforce a
|
|
stable global ordering. All variables are 4-element tuples to ensure that
|
|
Elixir's tuple-size-first comparison rule does not interfere with the
|
|
intended predicate ordering within a category.
|
|
"""
|
|
|
|
alias Tdd.TypeSpec
|
|
|
|
# --- Category 0: Primary Type Discriminators ---
|
|
# Padding with `nil` to make them 4-element tuples.
|
|
@spec v_is_atom() :: term()
|
|
def v_is_atom, do: {0, :is_atom, nil, nil}
|
|
|
|
@spec v_is_integer() :: term()
|
|
def v_is_integer, do: {0, :is_integer, nil, nil}
|
|
|
|
@spec v_is_list() :: term()
|
|
def v_is_list, do: {0, :is_list, nil, nil}
|
|
|
|
@spec v_is_tuple() :: term()
|
|
def v_is_tuple, do: {0, :is_tuple, nil, nil}
|
|
|
|
# --- Category 1: Atom Properties ---
|
|
@spec v_atom_eq(atom()) :: term()
|
|
def v_atom_eq(atom_val) when is_atom(atom_val), do: {1, :value, atom_val, nil}
|
|
|
|
# --- Category 2: Integer Properties ---
|
|
@spec v_int_lt(integer()) :: term()
|
|
def v_int_lt(n) when is_integer(n), do: {2, :alt, n, nil}
|
|
|
|
@spec v_int_eq(integer()) :: term()
|
|
def v_int_eq(n) when is_integer(n), do: {2, :beq, n, nil}
|
|
|
|
@spec v_int_gt(integer()) :: term()
|
|
def v_int_gt(n) when is_integer(n), do: {2, :cgt, n, nil}
|
|
|
|
# --- Category 4: Tuple Properties ---
|
|
# The most complex var here is `:b_element` with index and nested var.
|
|
# So all vars in this category need to be at least 4-element.
|
|
@spec v_tuple_size_eq(non_neg_integer()) :: term()
|
|
def v_tuple_size_eq(size) when is_integer(size) and size >= 0, do: {4, :a_size, size, nil}
|
|
|
|
@spec v_tuple_elem_pred(non_neg_integer(), term()) :: term()
|
|
def v_tuple_elem_pred(index, nested_pred_var) when is_integer(index) and index >= 0 do
|
|
{4, :b_element, index, nested_pred_var}
|
|
end
|
|
|
|
# --- Category 5: List Properties ---
|
|
# All are now 4-element tuples. The sorting will be correct.
|
|
@spec v_list_all_elements_are(TypeSpec.t()) :: term()
|
|
def v_list_all_elements_are(element_spec), do: {5, :a_all_elements, element_spec, nil}
|
|
|
|
@spec v_list_is_empty() :: term()
|
|
def v_list_is_empty, do: {5, :b_is_empty, nil, nil}
|
|
|
|
@spec v_list_head_pred(term()) :: term()
|
|
def v_list_head_pred(nested_pred_var), do: {5, :c_head, nested_pred_var, nil}
|
|
|
|
@spec v_list_tail_pred(term()) :: term()
|
|
def v_list_tail_pred(nested_pred_var), do: {5, :d_tail, nested_pred_var, nil}
|
|
end
|
|
|
|
defmodule Tdd.Predicate.Info do
|
|
@moduledoc "A knowledge base for the properties of TDD predicate variables."
|
|
alias Tdd.Variable
|
|
|
|
@doc "Returns a map of traits for a given predicate variable."
|
|
@spec get_traits(term()) :: map() | nil
|
|
def get_traits({0, :is_atom, _, _}), do: %{type: :primary, category: :atom}
|
|
def get_traits({0, :is_integer, _, _}), do: %{type: :primary, category: :integer}
|
|
def get_traits({0, :is_list, _, _}), do: %{type: :primary, category: :list}
|
|
def get_traits({0, :is_tuple, _, _}), do: %{type: :primary, category: :tuple}
|
|
|
|
def get_traits({1, :value, _val, _}) do
|
|
%{type: :atom_value, category: :atom, implies: [{Variable.v_is_atom(), true}]}
|
|
end
|
|
|
|
def get_traits({2, :alt, _, _}),
|
|
do: %{type: :integer_prop, category: :integer, implies: [{Variable.v_is_integer(), true}]}
|
|
|
|
def get_traits({2, :beq, _, _}),
|
|
do: %{type: :integer_prop, category: :integer, implies: [{Variable.v_is_integer(), true}]}
|
|
|
|
def get_traits({2, :cgt, _, _}),
|
|
do: %{type: :integer_prop, category: :integer, implies: [{Variable.v_is_integer(), true}]}
|
|
|
|
def get_traits({4, :a_size, _, _}) do
|
|
%{type: :tuple_prop, category: :tuple, implies: [{Variable.v_is_tuple(), true}]}
|
|
end
|
|
|
|
def get_traits({4, :b_element, index, _nested_var}) do
|
|
%{
|
|
type: :tuple_recursive,
|
|
category: :tuple,
|
|
sub_key: {:elem, index},
|
|
implies: [{Variable.v_is_tuple(), true}]
|
|
}
|
|
end
|
|
|
|
def get_traits({5, :a_all_elements, element_spec, _}) do
|
|
%{
|
|
type: :list_recursive_ambient,
|
|
category: :list,
|
|
ambient_constraint_spec: element_spec,
|
|
implies: [{Variable.v_is_list(), true}]
|
|
}
|
|
end
|
|
|
|
def get_traits({5, :b_is_empty, _, _}) do
|
|
%{type: :list_prop, category: :list, implies: [{Variable.v_is_list(), true}]}
|
|
end
|
|
|
|
def get_traits({5, :c_head, _nested_var, _}) do
|
|
%{
|
|
type: :list_recursive,
|
|
category: :list,
|
|
sub_key: :head,
|
|
implies: [{Variable.v_is_list(), true}, {Variable.v_list_is_empty(), false}]
|
|
}
|
|
end
|
|
|
|
def get_traits({5, :d_tail, _nested_var, _}) do
|
|
%{
|
|
type: :list_recursive,
|
|
category: :list,
|
|
sub_key: :tail,
|
|
implies: [{Variable.v_is_list(), true}, {Variable.v_list_is_empty(), false}]
|
|
}
|
|
end
|
|
|
|
# Default case for unknown variables
|
|
def get_traits(_), do: nil
|
|
end
|
|
|
|
# in a new file, e.g., lib/tdd/consistency/engine.ex
|
|
defmodule Tdd.Consistency.Engine do
|
|
@moduledoc """
|
|
A rule-based engine for checking the semantic consistency of a set of assumptions.
|
|
|
|
This engine is the "oracle" for the `Tdd.Algo.simplify/2` function. It takes
|
|
a set of assumptions about predicate variables (e.g., `{is_atom, true}`,
|
|
`{value == :foo, true}`) and determines if that set is logically consistent.
|
|
|
|
The process involves two main steps:
|
|
1. **Expansion**: The initial assumptions are expanded with all their logical
|
|
implications until a fixed point is reached. For example, `{value == :foo, true}`
|
|
implies `{is_atom, true}`.
|
|
2. **Flat Check**: The fully expanded set of assumptions is checked against a
|
|
series of rules for contradictions (e.g., a value cannot be both an atom
|
|
and an integer).
|
|
|
|
The difficult problem of recursive consistency (checking sub-problems like a
|
|
list's head against an ambient constraint) is currently disabled, as it creates
|
|
a logical cycle with the TDD compiler.
|
|
"""
|
|
|
|
alias Tdd.Predicate.Info
|
|
alias Tdd.TypeReconstructor
|
|
alias Tdd.Compiler
|
|
alias Tdd.Variable
|
|
|
|
@doc """
|
|
Checks if a map of assumptions is logically consistent.
|
|
|
|
Returns `:consistent` or `:contradiction`.
|
|
"""
|
|
@spec check(map()) :: :consistent | :contradiction
|
|
def check(assumptions) do
|
|
with {:ok, expanded} <- expand_with_implications(assumptions),
|
|
:ok <- check_flat_consistency(expanded) do
|
|
# --- RECURSIVE CHECK DISABLED ---
|
|
# The call to `check_recursive_consistency/2` is disabled because it
|
|
# introduces a logical cycle:
|
|
# simplify -> check -> spec_to_id -> simplify
|
|
# Solving this requires a more advanced architecture, such as passing a
|
|
# compiler context/handle to break the recursion. For now, we rely
|
|
# on the power of the main `simplify` algorithm to handle these recursive
|
|
# constraints by construction, and we focus on robust flat checks.
|
|
# :ok <- check_recursive_consistency(expanded, assumptions)
|
|
:consistent
|
|
else
|
|
:error -> :contradiction
|
|
end
|
|
end
|
|
|
|
# --- Step 1: Implication Expansion ---
|
|
|
|
@doc "Expands an assumption map with all its logical implications."
|
|
defp expand_with_implications(assumptions) do
|
|
# Start with the initial set of assumptions and expand until a fixed point is reached.
|
|
expand_loop(assumptions, assumptions)
|
|
end
|
|
|
|
defp expand_loop(new_assumptions, all_assumptions) do
|
|
# For each of the newly added assumptions, find its implications.
|
|
implications =
|
|
Enum.flat_map(new_assumptions, fn
|
|
# An assumption `var == true` may have implications.
|
|
{var, true} -> Map.get(Info.get_traits(var) || %{}, :implies, [])
|
|
# An assumption `var == false` has no simple implications in our current model.
|
|
_ -> []
|
|
end)
|
|
|
|
# Attempt to merge the new implications into the set of all assumptions.
|
|
case Enum.reduce(implications, {:ok, %{}}, fn {implied_var, implied_val}, acc ->
|
|
reduce_implication({implied_var, implied_val}, all_assumptions, acc)
|
|
end) do
|
|
{:error, :contradiction} ->
|
|
# A direct contradiction was found during expansion.
|
|
:error
|
|
|
|
{:ok, newly_added} when map_size(newly_added) == 0 ->
|
|
# Fixed point reached: no new, non-conflicting implications were found.
|
|
{:ok, all_assumptions}
|
|
|
|
{:ok, newly_added} ->
|
|
# Recursively expand with the newly found assumptions.
|
|
expand_loop(newly_added, Map.merge(all_assumptions, newly_added))
|
|
end
|
|
end
|
|
|
|
# Helper for the implication reducer.
|
|
defp reduce_implication({var, val}, all_assumptions, {:ok, new_acc}) do
|
|
case Map.get(all_assumptions, var) do
|
|
nil ->
|
|
# This is a new piece of information. Add it to the set of newly_added things.
|
|
{:ok, Map.put(new_acc, var, val)}
|
|
|
|
^val ->
|
|
# We already knew this. Continue without adding.
|
|
{:ok, new_acc}
|
|
|
|
_other_val ->
|
|
# Contradiction! The implication conflicts with an existing assumption.
|
|
{:error, :contradiction}
|
|
end
|
|
end
|
|
|
|
defp reduce_implication(_implication, _all_assumptions, error_acc), do: error_acc
|
|
|
|
# --- Step 2: Flat Consistency Checks ---
|
|
|
|
defp check_flat_consistency(assumptions) do
|
|
with :ok <- check_primary_type_exclusivity(assumptions),
|
|
:ok <- check_atom_consistency(assumptions),
|
|
:ok <- check_list_consistency(assumptions),
|
|
:ok <- check_integer_consistency(assumptions) do
|
|
:ok
|
|
else
|
|
:error -> :error
|
|
end
|
|
end
|
|
|
|
defp check_primary_type_exclusivity(assumptions) do
|
|
primary_types = [
|
|
Variable.v_is_atom(),
|
|
Variable.v_is_integer(),
|
|
Variable.v_is_list(),
|
|
Variable.v_is_tuple()
|
|
]
|
|
|
|
true_primary_types = Enum.count(primary_types, &(Map.get(assumptions, &1) == true))
|
|
|
|
if true_primary_types > 1, do: :error, else: :ok
|
|
end
|
|
|
|
defp check_atom_consistency(assumptions) do
|
|
true_atom_values =
|
|
Enum.reduce(assumptions, MapSet.new(), fn
|
|
{{1, :value, atom_val, _}, true}, acc -> MapSet.put(acc, atom_val)
|
|
_, acc -> acc
|
|
end)
|
|
|
|
if MapSet.size(true_atom_values) > 1, do: :error, else: :ok
|
|
end
|
|
|
|
defp check_list_consistency(assumptions) do
|
|
# This check is actually redundant if `expand_with_implications` works correctly,
|
|
# as the `implies` rules for head/tail would create an explicit contradiction
|
|
# with `is_empty == true`. However, it serves as a good safeguard.
|
|
is_empty = Map.get(assumptions, Variable.v_list_is_empty()) == true
|
|
|
|
has_head_prop = Enum.any?(assumptions, &match?({{5, :c_head, _, _}, true}, &1))
|
|
has_tail_prop = Enum.any?(assumptions, &match?({{5, :d_tail, _, _}, true}, &1))
|
|
|
|
if is_empty and (has_head_prop or has_tail_prop), do: :error, else: :ok
|
|
end
|
|
|
|
defp check_integer_consistency(assumptions) do
|
|
initial_range = {:neg_inf, :pos_inf}
|
|
|
|
result =
|
|
Enum.reduce_while(assumptions, initial_range, fn assumption, {min, max} ->
|
|
case assumption do
|
|
{{2, :alt, n, _}, true} -> narrow_range(min, safe_min(max, n - 1))
|
|
{{2, :alt, n, _}, false} -> narrow_range(safe_max(min, n), max)
|
|
{{2, :beq, n, _}, true} -> narrow_range(safe_max(min, n), safe_min(max, n))
|
|
{{2, :beq, n, _}, false} when min == n and max == n -> {:halt, :invalid}
|
|
{{2, :cgt, n, _}, true} -> narrow_range(safe_max(min, n + 1), max)
|
|
{{2, :cgt, n, _}, false} -> narrow_range(min, safe_min(max, n))
|
|
_ -> {:cont, {min, max}}
|
|
end
|
|
end)
|
|
|
|
case result, do: (:invalid -> :error; _ -> :ok)
|
|
end
|
|
|
|
# **IMPROVED**: A clearer implementation for checking range validity.
|
|
defp narrow_range(min, max) do
|
|
is_invalid =
|
|
case {min, max} do
|
|
{:neg_inf, _} -> false
|
|
{_, :pos_inf} -> false
|
|
{m, n} when is_integer(m) and is_integer(n) -> m > n
|
|
_ -> false # Should not happen with safe helpers
|
|
end
|
|
|
|
if is_invalid, do: {:halt, :invalid}, else: {:cont, {min, max}}
|
|
end
|
|
|
|
# **NEW**: Safe comparison helpers that understand :neg_inf and :pos_inf
|
|
defp safe_max(:neg_inf, x), do: x
|
|
defp safe_max(x, :neg_inf), do: x
|
|
defp safe_max(:pos_inf, _), do: :pos_inf
|
|
defp safe_max(_, :pos_inf), do: :pos_inf
|
|
defp safe_max(a, b), do: :erlang.max(a, b)
|
|
|
|
defp safe_min(:pos_inf, x), do: x
|
|
defp safe_min(x, :pos_inf), do: x
|
|
defp safe_min(:neg_inf, _), do: :neg_inf
|
|
defp safe_min(_, :neg_inf), do: :neg_inf
|
|
defp safe_min(a, b), do: :erlang.min(a, b)
|
|
|
|
# --- Step 3: Recursive Consistency (Disabled but preserved) ---
|
|
defp check_recursive_consistency(assumptions, full_context) do
|
|
# 1. Gather all ambient constraints from the parent context.
|
|
ambient_constraints =
|
|
Enum.reduce(full_context, %{}, fn
|
|
# This now correctly handles all cases, not just `{var, true}`.
|
|
{var, true}, acc ->
|
|
case Info.get_traits(var) do
|
|
%{type: :list_recursive_ambient, ambient_constraint_spec: spec} ->
|
|
Map.merge(acc, %{head: spec, tail: spec})
|
|
|
|
_ ->
|
|
acc
|
|
end
|
|
|
|
_, acc ->
|
|
acc
|
|
end)
|
|
|
|
# 2. Partition assumptions into sub-problems (head, tail, tuple elements).
|
|
sub_problems =
|
|
Enum.group_by(assumptions, &Info.get_traits(elem(&1, 0))[:sub_key])
|
|
|> Map.drop([nil])
|
|
|
|
# 3. Check each sub-problem against its ambient constraint.
|
|
Enum.reduce_while(sub_problems, :ok, fn {sub_key, sub_assumptions_list}, _acc ->
|
|
ambient_spec = Map.get(ambient_constraints, sub_key)
|
|
|
|
# Re-map nested vars to base form for reconstruction
|
|
remapped_assumptions =
|
|
Map.new(sub_assumptions_list, fn {var, val} ->
|
|
# Simplified pattern match to extract the inner variable
|
|
{_cat, _pred, _idx, nested_var} = var
|
|
{nested_var, val}
|
|
end)
|
|
|
|
reconstructed_spec = TypeReconstructor.spec_from_assumptions(remapped_assumptions)
|
|
|
|
# Compile both specs to TDDs and check for subtyping.
|
|
# THIS IS THE SOURCE OF THE LOGICAL CYCLE
|
|
reconstructed_id = Compiler.spec_to_id(reconstructed_spec)
|
|
ambient_id = Compiler.spec_to_id(ambient_spec)
|
|
|
|
# if Tdd.is_subtype(reconstructed_id, ambient_id) do
|
|
# ...
|
|
# else
|
|
# {:halt, :error}
|
|
# end
|
|
# For now, we assume it's okay to proceed.
|
|
case check(remapped_assumptions) do
|
|
:consistent -> {:cont, :ok}
|
|
:contradiction -> {:halt, :error}
|
|
end
|
|
end)
|
|
end
|
|
end
|
|
|
|
defmodule Tdd.Algo do
|
|
@moduledoc "Implements the core, stateless algorithms for TDD manipulation."
|
|
alias Tdd.Store
|
|
alias Tdd.Consistency.Engine
|
|
|
|
# --- Binary Operation: Apply ---
|
|
@spec apply(atom, (atom, atom -> atom), non_neg_integer, non_neg_integer) :: non_neg_integer
|
|
def apply(op_name, op_lambda, u1_id, u2_id) do
|
|
# Memoization wrapper
|
|
cache_key = {:apply, op_name, Enum.sort([u1_id, u2_id])}
|
|
|
|
case Store.get_op_cache(cache_key) do
|
|
{:ok, result_id} ->
|
|
result_id
|
|
|
|
:not_found ->
|
|
result_id = do_apply(op_name, op_lambda, u1_id, u2_id)
|
|
Store.put_op_cache(cache_key, result_id)
|
|
result_id
|
|
end
|
|
end
|
|
|
|
defp do_apply(op_name, op_lambda, u1_id, u2_id) do
|
|
with {:ok, u1_details} <- Store.get_node(u1_id),
|
|
{:ok, u2_details} <- Store.get_node(u2_id) do
|
|
cond do
|
|
(u1_details == :true_terminal or u1_details == :false_terminal) and
|
|
(u2_details == :true_terminal or u2_details == :false_terminal) ->
|
|
if op_lambda.(u1_details, u2_details) == :true_terminal,
|
|
do: Store.true_node_id(),
|
|
else: Store.false_node_id()
|
|
|
|
u1_details == :true_terminal or u1_details == :false_terminal ->
|
|
{var2, y2, n2, d2} = u2_details
|
|
|
|
Store.find_or_create_node(
|
|
var2,
|
|
apply(op_name, op_lambda, u1_id, y2),
|
|
apply(op_name, op_lambda, u1_id, n2),
|
|
apply(op_name, op_lambda, u1_id, d2)
|
|
)
|
|
|
|
u2_details == :true_terminal or u2_details == :false_terminal ->
|
|
{var1, y1, n1, d1} = u1_details
|
|
|
|
Store.find_or_create_node(
|
|
var1,
|
|
apply(op_name, op_lambda, y1, u2_id),
|
|
apply(op_name, op_lambda, n1, u2_id),
|
|
apply(op_name, op_lambda, d1, u2_id)
|
|
)
|
|
|
|
true ->
|
|
{var1, y1, n1, d1} = u1_details
|
|
{var2, y2, n2, d2} = u2_details
|
|
top_var = Enum.min([var1, var2])
|
|
|
|
res_y =
|
|
apply(
|
|
op_name,
|
|
op_lambda,
|
|
if(var1 == top_var, do: y1, else: u1_id),
|
|
if(var2 == top_var, do: y2, else: u2_id)
|
|
)
|
|
|
|
res_n =
|
|
apply(
|
|
op_name,
|
|
op_lambda,
|
|
if(var1 == top_var, do: n1, else: u1_id),
|
|
if(var2 == top_var, do: n2, else: u2_id)
|
|
)
|
|
|
|
res_d =
|
|
apply(
|
|
op_name,
|
|
op_lambda,
|
|
if(var1 == top_var, do: d1, else: u1_id),
|
|
if(var2 == top_var, do: d2, else: u2_id)
|
|
)
|
|
|
|
Store.find_or_create_node(top_var, res_y, res_n, res_d)
|
|
end
|
|
end
|
|
end
|
|
|
|
# --- Unary Operation: Negation ---
|
|
@spec negate(non_neg_integer) :: non_neg_integer
|
|
def negate(tdd_id) do
|
|
cache_key = {:negate, tdd_id}
|
|
|
|
case Store.get_op_cache(cache_key) do
|
|
{:ok, result_id} ->
|
|
result_id
|
|
|
|
:not_found ->
|
|
result_id =
|
|
case Store.get_node(tdd_id) do
|
|
{:ok, :true_terminal} ->
|
|
Store.false_node_id()
|
|
|
|
{:ok, :false_terminal} ->
|
|
Store.true_node_id()
|
|
|
|
{:ok, {var, y, n, d}} ->
|
|
Store.find_or_create_node(var, negate(y), negate(n), negate(d))
|
|
end
|
|
|
|
Store.put_op_cache(cache_key, result_id)
|
|
result_id
|
|
end
|
|
end
|
|
|
|
# --- Unary Operation: Semantic Simplification ---
|
|
@spec simplify(non_neg_integer(), map()) :: non_neg_integer
|
|
def simplify(tdd_id, assumptions \\ %{}) do
|
|
# Sort assumptions to ensure the cache key is canonical.
|
|
sorted_assumptions = Enum.sort(assumptions)
|
|
cache_key = {:simplify, tdd_id, sorted_assumptions}
|
|
|
|
case Store.get_op_cache(cache_key) do
|
|
{:ok, result_id} ->
|
|
result_id
|
|
|
|
:not_found ->
|
|
result_id = do_simplify(tdd_id, assumptions)
|
|
Store.put_op_cache(cache_key, result_id)
|
|
result_id
|
|
end
|
|
end
|
|
|
|
defp do_simplify(tdd_id, assumptions) do
|
|
# 1. Check if the current path is contradictory. If so, prune this branch.
|
|
if Engine.check(assumptions) == :contradiction do
|
|
Store.false_node_id()
|
|
else
|
|
case Store.get_node(tdd_id) do
|
|
# 2. Terminal nodes are already simple.
|
|
{:ok, :true_terminal} ->
|
|
Store.true_node_id()
|
|
|
|
{:ok, :false_terminal} ->
|
|
Store.false_node_id()
|
|
|
|
# 3. Handle non-terminal nodes.
|
|
{:ok, {var, y, n, d}} ->
|
|
# 4. Check if the variable's value is already known or implied.
|
|
case Map.get(assumptions, var) do
|
|
true ->
|
|
simplify(y, assumptions)
|
|
|
|
false ->
|
|
simplify(n, assumptions)
|
|
|
|
:dc ->
|
|
simplify(d, assumptions)
|
|
|
|
nil ->
|
|
# The variable is not explicitly constrained. Check for implied constraints.
|
|
# Note: For now, the Engine only performs flat checks.
|
|
implies_true = Engine.check(Map.put(assumptions, var, false)) == :contradiction
|
|
implies_false = Engine.check(Map.put(assumptions, var, true)) == :contradiction
|
|
|
|
cond do
|
|
implies_true and implies_false ->
|
|
Store.false_node_id()
|
|
|
|
implies_true ->
|
|
simplify(y, assumptions)
|
|
|
|
implies_false ->
|
|
simplify(n, assumptions)
|
|
|
|
true ->
|
|
# No constraint, so recursively simplify all branches.
|
|
s_y = simplify(y, Map.put(assumptions, var, true))
|
|
s_n = simplify(n, Map.put(assumptions, var, false))
|
|
s_d = simplify(d, Map.put(assumptions, var, :dc))
|
|
Store.find_or_create_node(var, s_y, s_n, s_d)
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
defmodule Tdd.TypeReconstructor do
|
|
@moduledoc """
|
|
Reconstructs a high-level `TypeSpec` from a low-level assumption map.
|
|
|
|
This module performs the inverse operation of the TDD compiler. It takes a
|
|
set of predicate assumptions (e.g., from a path in a TDD) and synthesizes
|
|
the most specific `TypeSpec` that satisfies all of those assumptions.
|
|
"""
|
|
alias Tdd.TypeSpec
|
|
alias Tdd.Predicate.Info
|
|
alias Tdd.Variable
|
|
|
|
@doc """
|
|
Takes a map of `{variable, boolean}` assumptions and returns a `TypeSpec`.
|
|
"""
|
|
@spec spec_from_assumptions(map()) :: TypeSpec.t()
|
|
def spec_from_assumptions(assumptions) do
|
|
# 1. Partition assumptions into groups for the top-level entity and its sub-components.
|
|
partitions =
|
|
Enum.group_by(assumptions, fn {var, _val} ->
|
|
case Info.get_traits(var) do
|
|
# :head or :tail
|
|
%{type: :list_recursive, sub_key: key} -> key
|
|
# {:elem, index}
|
|
%{type: :tuple_recursive, sub_key: key} -> key
|
|
# All other predicates apply to the top-level entity
|
|
_ -> :top_level
|
|
end
|
|
end)
|
|
|
|
# 2. Reconstruct the spec for the top-level entity from its flat assumptions.
|
|
top_level_assumptions = Map.get(partitions, :top_level, []) |> Map.new()
|
|
top_level_spec = spec_from_flat_assumptions(top_level_assumptions)
|
|
|
|
# 3. Recursively reconstruct specs for all sub-problems (head, tail, elements).
|
|
sub_problem_specs =
|
|
partitions
|
|
|> Map.drop([:top_level])
|
|
|> Enum.map(fn {sub_key, sub_assumptions_list} ->
|
|
# Re-map the nested variables back to their base form for the recursive call.
|
|
# e.g., {{5, :c_head, NESTED_VAR, _}, val} -> {NESTED_VAR, val}
|
|
remapped_assumptions =
|
|
sub_assumptions_list
|
|
|> Map.new(fn {var, val} ->
|
|
# This pattern matching is a bit simplified for clarity
|
|
{_cat, _pred, nested_var_or_idx, maybe_nested_var} = var
|
|
|
|
nested_var =
|
|
if is_nil(maybe_nested_var), do: nested_var_or_idx, else: maybe_nested_var
|
|
|
|
{nested_var, val}
|
|
end)
|
|
|
|
# Recursively build the spec for the sub-problem
|
|
sub_spec = spec_from_assumptions(remapped_assumptions)
|
|
|
|
# Wrap it in a constructor that describes its relationship to the parent
|
|
case sub_key do
|
|
# Partial spec: just describes the head
|
|
:head ->
|
|
{:cons, sub_spec, :any}
|
|
|
|
# Partial spec: just describes the tail
|
|
:tail ->
|
|
{:cons, :any, sub_spec}
|
|
|
|
{:elem, index} ->
|
|
# Create a sparse tuple spec, e.g., {any, any, <sub_spec>, any}
|
|
# This is complex, a simpler approach is needed for now.
|
|
# For now, we'll just return a tuple spec that isn't fully specific.
|
|
# A full implementation would need to know the tuple's size.
|
|
# This is an oversimplification but works for demo
|
|
{:tuple, [sub_spec]}
|
|
end
|
|
end)
|
|
|
|
# 4. The final spec is the intersection of the top-level spec and all sub-problem specs.
|
|
final_spec_list = [top_level_spec | sub_problem_specs]
|
|
TypeSpec.normalize({:intersect, final_spec_list})
|
|
end
|
|
|
|
@doc "Handles only the 'flat' (non-recursive) assumptions for a single entity."
|
|
defp spec_from_flat_assumptions(assumptions) do
|
|
specs =
|
|
Enum.map(assumptions, fn {var, bool_val} ->
|
|
# Convert each assumption into a `TypeSpec`.
|
|
# A `true` assumption means the type is `X`.
|
|
# A `false` assumption means the type is `¬X`.
|
|
spec =
|
|
case var do
|
|
{0, :is_atom, _, _} -> :atom
|
|
{0, :is_integer, _, _} -> :integer
|
|
{0, :is_list, _, _} -> :list
|
|
{0, :is_tuple, _, _} -> :tuple
|
|
{1, :value, val, _} -> {:literal, val}
|
|
# For integer properties, we create a range spec. This part could be more detailed.
|
|
# x < n
|
|
{2, :alt, n, _} -> {:integer_range, :neg_inf, n - 1}
|
|
{2, :beq, n, _} -> {:literal, n}
|
|
# x > n
|
|
{2, :cgt, n, _} -> {:integer_range, n + 1, :pos_inf}
|
|
# Simplified for now
|
|
{4, :a_size, _, _} -> :tuple
|
|
{5, :b_is_empty, _, _} -> {:literal, []}
|
|
# Ignore recursive and ambient vars at this flat level
|
|
_ -> :any
|
|
end
|
|
|
|
if bool_val, do: spec, else: {:negation, spec}
|
|
end)
|
|
|
|
# The result is the intersection of all the individual specs.
|
|
TypeSpec.normalize({:intersect, specs})
|
|
end
|
|
end
|
|
|
|
defmodule Tdd.Compiler do
|
|
@moduledoc "Compiles a `TypeSpec` into a canonical TDD ID."
|
|
alias Tdd.TypeSpec
|
|
alias Tdd.Variable
|
|
alias Tdd.Store
|
|
alias Tdd.Algo
|
|
|
|
@doc "The main entry point. Takes a spec and returns its TDD ID."
|
|
@spec spec_to_id(TypeSpec.t()) :: non_neg_integer()
|
|
def spec_to_id(spec) do
|
|
# Memoization wrapper for the entire compilation process.
|
|
normalized_spec = TypeSpec.normalize(spec)
|
|
cache_key = {:spec_to_id, normalized_spec}
|
|
|
|
case Store.get_op_cache(cache_key) do
|
|
{:ok, id} ->
|
|
id
|
|
|
|
:not_found ->
|
|
id = do_spec_to_id(normalized_spec)
|
|
Store.put_op_cache(cache_key, id)
|
|
id
|
|
end
|
|
end
|
|
|
|
# The core compilation logic
|
|
defp do_spec_to_id(spec) do
|
|
raw_id =
|
|
case spec do
|
|
# --- Base Types ---
|
|
:any ->
|
|
Store.true_node_id()
|
|
|
|
:none ->
|
|
Store.false_node_id()
|
|
|
|
:atom ->
|
|
Store.find_or_create_node(
|
|
Variable.v_is_atom(),
|
|
Store.true_node_id(),
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
:integer ->
|
|
Store.find_or_create_node(
|
|
Variable.v_is_integer(),
|
|
Store.true_node_id(),
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
# Add :list, :tuple etc. here. They are simple structural TDDs.
|
|
:list ->
|
|
Store.find_or_create_node(
|
|
Variable.v_is_list(),
|
|
Store.true_node_id(),
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
# --- Literal Types ---
|
|
{:literal, val} when is_atom(val) ->
|
|
eq_node =
|
|
Store.find_or_create_node(
|
|
Variable.v_atom_eq(val),
|
|
Store.true_node_id(),
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
Store.find_or_create_node(
|
|
Variable.v_is_atom(),
|
|
eq_node,
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
{:literal, val} when is_integer(val) ->
|
|
eq_node =
|
|
Store.find_or_create_node(
|
|
Variable.v_int_eq(val),
|
|
Store.true_node_id(),
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
Store.find_or_create_node(
|
|
Variable.v_is_integer(),
|
|
eq_node,
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
{:literal, []} ->
|
|
empty_node =
|
|
Store.find_or_create_node(
|
|
Variable.v_list_is_empty(),
|
|
Store.true_node_id(),
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
Store.find_or_create_node(
|
|
Variable.v_is_list(),
|
|
empty_node,
|
|
Store.false_node_id(),
|
|
Store.false_node_id()
|
|
)
|
|
|
|
# Add other literals as needed
|
|
|
|
# --- Set-Theoretic Combinators ---
|
|
{:union, specs} ->
|
|
ids = Enum.map(specs, &spec_to_id/1)
|
|
|
|
Enum.reduce(ids, Store.false_node_id(), fn id, acc ->
|
|
Algo.apply(
|
|
:sum,
|
|
fn
|
|
:true_terminal, _ -> :true_terminal
|
|
_, :true_terminal -> :true_terminal
|
|
:false_terminal, t2 -> t2
|
|
t1, :false_terminal -> t1
|
|
end,
|
|
id,
|
|
acc
|
|
)
|
|
end)
|
|
|
|
{:intersect, specs} ->
|
|
ids = Enum.map(specs, &spec_to_id/1)
|
|
|
|
Enum.reduce(ids, Store.true_node_id(), fn id, acc ->
|
|
Algo.apply(
|
|
:intersect,
|
|
fn
|
|
:false_terminal, _ -> :false_terminal
|
|
_, :false_terminal -> :false_terminal
|
|
:true_terminal, t2 -> t2
|
|
t1, :true_terminal -> t1
|
|
end,
|
|
id,
|
|
acc
|
|
)
|
|
end)
|
|
|
|
{:negation, sub_spec} ->
|
|
Algo.negate(spec_to_id(sub_spec))
|
|
|
|
# --- Recursive Types (STUBS for now) ---
|
|
# These will be implemented in Step 3
|
|
{:list_of, _} ->
|
|
raise "Tdd.Compiler: :list_of not yet implemented"
|
|
|
|
{:tuple, _} ->
|
|
raise "Tdd.Compiler: {:tuple, [...]} not yet implemented"
|
|
|
|
{:cons, _, _} ->
|
|
raise "Tdd.Compiler: :cons not yet implemented"
|
|
|
|
# --- Default ---
|
|
_ ->
|
|
raise "Tdd.Compiler: Cannot compile unknown spec: #{inspect(spec)}"
|
|
end
|
|
|
|
# CRUCIAL: Every constructed TDD must be passed through simplify
|
|
# to ensure it's in its canonical, semantically-reduced form.
|
|
Algo.simplify(raw_id)
|
|
end
|
|
end
|
|
|
|
####
|
|
# xxx
|
|
####
|
|
|
|
defmodule TddStoreTests do
|
|
def test(name, expected, result) do
|
|
if expected == result do
|
|
IO.puts("[PASS] #{name}")
|
|
else
|
|
IO.puts("[FAIL] #{name}")
|
|
IO.puts(" Expected: #{inspect(expected)}")
|
|
IO.puts(" Got: #{inspect(result)}")
|
|
Process.put(:test_failures, [name | Process.get(:test_failures, [])])
|
|
end
|
|
end
|
|
|
|
def run() do
|
|
IO.puts("\n--- Running Tdd.Store Tests ---")
|
|
Process.put(:test_failures, [])
|
|
|
|
# --- Test Setup ---
|
|
Tdd.Store.init()
|
|
|
|
# --- Test Cases ---
|
|
IO.puts("\n--- Section: Initialization and Terminals ---")
|
|
test("true_node_id returns 1", 1, Tdd.Store.true_node_id())
|
|
test("false_node_id returns 0", 0, Tdd.Store.false_node_id())
|
|
test("get_node for ID 1 returns true_terminal", {:ok, :true_terminal}, Tdd.Store.get_node(1))
|
|
|
|
test(
|
|
"get_node for ID 0 returns false_terminal",
|
|
{:ok, :false_terminal},
|
|
Tdd.Store.get_node(0)
|
|
)
|
|
|
|
test(
|
|
"get_node for unknown ID returns not_found",
|
|
{:error, :not_found},
|
|
Tdd.Store.get_node(99)
|
|
)
|
|
|
|
IO.puts("\n--- Section: Node Creation and Structural Sharing ---")
|
|
# Define some opaque variables
|
|
var_a = {:is_atom}
|
|
var_b = {:is_integer}
|
|
true_id = Tdd.Store.true_node_id()
|
|
false_id = Tdd.Store.false_node_id()
|
|
|
|
# Create a new node. It should get ID 2.
|
|
id1 = Tdd.Store.find_or_create_node(var_a, true_id, false_id, false_id)
|
|
test("First created node gets ID 2", 2, id1)
|
|
|
|
# Verify its content
|
|
test(
|
|
"get_node for ID 2 returns the correct tuple",
|
|
{:ok, {var_a, true_id, false_id, false_id}},
|
|
Tdd.Store.get_node(id1)
|
|
)
|
|
|
|
# Create another, different node. It should get ID 3.
|
|
id2 = Tdd.Store.find_or_create_node(var_b, id1, false_id, false_id)
|
|
test("Second created node gets ID 3", 3, id2)
|
|
|
|
# Attempt to create the first node again.
|
|
id1_again = Tdd.Store.find_or_create_node(var_a, true_id, false_id, false_id)
|
|
|
|
test(
|
|
"Attempting to create an existing node returns the same ID (Structural Sharing)",
|
|
id1,
|
|
id1_again
|
|
)
|
|
|
|
# Check that next_id was not incremented by the shared call
|
|
id3 = Tdd.Store.find_or_create_node(var_b, true_id, false_id, false_id)
|
|
test("Next new node gets the correct ID (4)", 4, id3)
|
|
|
|
IO.puts("\n--- Section: Basic Reduction Rule ---")
|
|
# Create a node where all children are the same.
|
|
id_redundant = Tdd.Store.find_or_create_node(var_a, id3, id3, id3)
|
|
|
|
test(
|
|
"A node with identical children reduces to the child's ID",
|
|
id3,
|
|
id_redundant
|
|
)
|
|
|
|
IO.puts("\n--- Section: Caching ---")
|
|
cache_key = {:my_op, 1, 2}
|
|
test("Cache is initially empty for a key", :not_found, Tdd.Store.get_op_cache(cache_key))
|
|
Tdd.Store.put_op_cache(cache_key, :my_result)
|
|
|
|
test(
|
|
"Cache returns the stored value after put",
|
|
{:ok, :my_result},
|
|
Tdd.Store.get_op_cache(cache_key)
|
|
)
|
|
|
|
Tdd.Store.put_op_cache(cache_key, :new_result)
|
|
test("Cache can be updated", {:ok, :new_result}, Tdd.Store.get_op_cache(cache_key))
|
|
|
|
# --- Final Report ---
|
|
failures = Process.get(:test_failures, [])
|
|
|
|
if failures == [] do
|
|
IO.puts("\n✅ All Tdd.Store tests passed!")
|
|
else
|
|
IO.puts("\n❌ Found #{length(failures)} test failures.")
|
|
end
|
|
end
|
|
end
|
|
|
|
defmodule TypeSpecTests do
|
|
alias Tdd.TypeSpec
|
|
|
|
# Simple test helper function
|
|
defp test(name, expected, tested) do
|
|
current_failures = Process.get(:test_failures, [])
|
|
result = TypeSpec.normalize(tested)
|
|
# Use a custom comparison to handle potentially unsorted lists in expected values
|
|
# The normalize function *should* sort, but this makes tests more robust.
|
|
is_equal =
|
|
case {expected, result} do
|
|
{{:union, list1}, {:union, list2}} -> Enum.sort(list1) == Enum.sort(list2)
|
|
{{:intersect, list1}, {:intersect, list2}} -> Enum.sort(list1) == Enum.sort(list2)
|
|
_ -> expected == result
|
|
end
|
|
|
|
if is_equal do
|
|
IO.puts("[PASS] #{name}")
|
|
else
|
|
IO.puts("[FAIL] #{name}")
|
|
IO.puts(" tested: #{inspect(tested)}")
|
|
IO.puts(" Expected: #{inspect(expected)}")
|
|
IO.puts(" Got: #{inspect(result)}")
|
|
Process.put(:test_failures, [name | current_failures])
|
|
end
|
|
end
|
|
|
|
def run() do
|
|
IO.puts("\n--- Running Tdd.TypeSpec.normalize/1 Tests ---")
|
|
Process.put(:test_failures, [])
|
|
|
|
# --- Test Section: Base & Simple Types ---
|
|
IO.puts("\n--- Section: Base & Simple Types ---")
|
|
test("Normalizing :any is idempotent", :any, :any)
|
|
test("Normalizing :none is idempotent", :none, :none)
|
|
test("Normalizing :atom is idempotent", :atom, :atom)
|
|
test("Normalizing a literal is idempotent", {:literal, :foo}, {:literal, :foo})
|
|
|
|
# --- Test Section: Double Negation ---
|
|
IO.puts("\n--- Section: Double Negation ---")
|
|
test("¬(¬atom) simplifies to atom", :atom, {:negation, {:negation, :atom}})
|
|
test("A single negation is preserved", {:negation, :integer}, {:negation, :integer})
|
|
|
|
test(
|
|
"¬(¬(¬atom)) simplifies to ¬atom",
|
|
{:negation, :atom},
|
|
{:negation, {:negation, {:negation, :atom}}}
|
|
)
|
|
|
|
# --- Test Section: Union Normalization ---
|
|
IO.puts("\n--- Section: Union Normalization ---")
|
|
|
|
test(
|
|
"Flattens nested unions",
|
|
{:union, [:atom, :integer, :list]},
|
|
{:union, [:integer, {:union, [:list, :atom]}]}
|
|
)
|
|
|
|
test(
|
|
"Sorts members of a union",
|
|
{:union, [:atom, :integer, :list]},
|
|
{:union, [:list, :integer, :atom]}
|
|
)
|
|
|
|
test(
|
|
"Removes duplicates in a union",
|
|
{:union, [:atom, :integer]},
|
|
{:union, [:integer, :atom, :integer]}
|
|
)
|
|
|
|
test("Simplifies a union with :none (A | none -> A)", :atom, {:union, [:atom, :none]})
|
|
test("Simplifies a union with :any (A | any -> any)", :any, {:union, [:atom, :any]})
|
|
test("An empty union simplifies to :none", :none, {:union, []})
|
|
test("A union containing only :none simplifies to :none", :none, {:union, [:none, :none]})
|
|
test("A union of a single element simplifies to the element itself", :atom, {:union, [:atom]})
|
|
|
|
# --- Test Section: Intersection Normalization ---
|
|
IO.puts("\n--- Section: Intersection Normalization ---")
|
|
|
|
test(
|
|
"Flattens nested intersections",
|
|
{:intersect, [:atom, :integer, :list]},
|
|
{:intersect, [:integer, {:intersect, [:list, :atom]}]}
|
|
)
|
|
|
|
test(
|
|
"Sorts members of an intersection",
|
|
{:intersect, [:atom, :integer, :list]},
|
|
{:intersect, [:list, :integer, :atom]}
|
|
)
|
|
|
|
test(
|
|
"Removes duplicates in an intersection",
|
|
{:intersect, [:atom, :integer]},
|
|
{:intersect, [:integer, :atom, :integer]}
|
|
)
|
|
|
|
test(
|
|
"Simplifies an intersection with :any (A & any -> A)",
|
|
:atom,
|
|
{:intersect, [:atom, :any]}
|
|
)
|
|
|
|
test(
|
|
"Simplifies an intersection with :none (A & none -> none)",
|
|
:none,
|
|
{:intersect, [:atom, :none]}
|
|
)
|
|
|
|
test("An empty intersection simplifies to :any", :any, {:intersect, []})
|
|
|
|
test(
|
|
"An intersection of a single element simplifies to the element itself",
|
|
:atom,
|
|
{:intersect, [:atom]}
|
|
)
|
|
|
|
# --- Test Section: Recursive Normalization ---
|
|
IO.puts("\n--- Section: Recursive Normalization ---")
|
|
|
|
test(
|
|
"Recursively normalizes elements in a tuple",
|
|
{:tuple, [:atom, {:union, [{:literal, :a}, {:literal, :b}]}]},
|
|
{:tuple, [{:union, [:atom]}, {:union, [{:literal, :a}, {:literal, :b}]}]}
|
|
)
|
|
|
|
test(
|
|
"Recursively normalizes head and tail in a cons",
|
|
{:cons, :any, {:negation, :integer}},
|
|
{:cons, {:union, [:atom, :any]}, {:negation, {:union, [:integer]}}}
|
|
)
|
|
|
|
test(
|
|
"Recursively normalizes element in list_of",
|
|
{:list_of, :list},
|
|
{:list_of, {:intersect, [:any, :list]}}
|
|
)
|
|
|
|
test(
|
|
"Recursively normalizes sub-spec in negation",
|
|
{:negation, {:union, [{:literal, :a}, {:literal, :b}]}},
|
|
{:negation, {:union, [{:literal, :a}, {:literal, :b}]}}
|
|
)
|
|
|
|
# --- Test Section: Complex Nested Cases ---
|
|
IO.puts("\n--- Section: Complex Nested Cases ---")
|
|
|
|
complex_spec =
|
|
{:union,
|
|
[
|
|
:atom,
|
|
# simplifies to :integer
|
|
{:intersect, [:any, :integer, {:intersect, [:integer]}]},
|
|
# simplifies to :list
|
|
{:union, [:none, :list]}
|
|
]}
|
|
|
|
test(
|
|
"Handles complex nested simplifications correctly",
|
|
{:union, [:atom, :integer, :list]},
|
|
complex_spec
|
|
)
|
|
|
|
# --- Final Report ---
|
|
failures = Process.get(:test_failures, [])
|
|
|
|
if failures == [] do
|
|
IO.puts("\n✅ All TypeSpec tests passed!")
|
|
else
|
|
IO.puts("\n❌ Found #{length(failures)} test failures:")
|
|
Enum.each(failures, &IO.puts(" - #{&1}"))
|
|
end
|
|
end
|
|
end
|
|
|
|
defmodule TddVariableTests do
|
|
alias Tdd.Variable
|
|
alias Tdd.TypeSpec
|
|
|
|
# Simple test helper function
|
|
defp test(name, expected, result) do
|
|
current_failures = Process.get(:test_failures, [])
|
|
|
|
if expected == result do
|
|
IO.puts("[PASS] #{name}")
|
|
else
|
|
IO.puts("[FAIL] #{name}")
|
|
IO.puts(" Expected: #{inspect(expected)}")
|
|
IO.puts(" Got: #{inspect(result)}")
|
|
Process.put(:test_failures, [name | current_failures])
|
|
end
|
|
end
|
|
|
|
def run() do
|
|
IO.puts("\n--- Running Tdd.Variable Tests ---")
|
|
Process.put(:test_failures, [])
|
|
|
|
# --- Test Section: Variable Structure ---
|
|
IO.puts("\n--- Section: Variable Structure ---")
|
|
test("v_is_atom returns correct tuple", {0, :is_atom, nil, nil}, Variable.v_is_atom())
|
|
test("v_atom_eq returns correct tuple", {1, :value, :foo, nil}, Variable.v_atom_eq(:foo))
|
|
test("v_int_lt returns correct tuple", {2, :alt, 10, nil}, Variable.v_int_lt(10))
|
|
|
|
test(
|
|
"v_tuple_size_eq returns correct tuple",
|
|
{4, :a_size, 2, nil},
|
|
Variable.v_tuple_size_eq(2)
|
|
)
|
|
|
|
test(
|
|
"v_tuple_elem_pred nests a variable correctly",
|
|
{4, :b_element, 0, {0, :is_integer, nil, nil}},
|
|
Variable.v_tuple_elem_pred(0, Variable.v_is_integer())
|
|
)
|
|
|
|
test(
|
|
"v_list_is_empty returns correct tuple",
|
|
{5, :b_is_empty, nil, nil},
|
|
Variable.v_list_is_empty()
|
|
)
|
|
|
|
test(
|
|
"v_list_head_pred nests a variable correctly",
|
|
{5, :c_head, {0, :is_atom, nil, nil}, nil},
|
|
Variable.v_list_head_pred(Variable.v_is_atom())
|
|
)
|
|
|
|
test(
|
|
"v_list_all_elements_are nests a TypeSpec correctly",
|
|
{5, :a_all_elements, {:union, [:atom, :integer]}, nil},
|
|
Variable.v_list_all_elements_are(TypeSpec.normalize({:union, [:integer, :atom]}))
|
|
)
|
|
|
|
# --- Test Section: Global Ordering ---
|
|
IO.puts("\n--- Section: Global Ordering (Based on Elixir Term Comparison) ---")
|
|
# Category 0 < Category 1
|
|
test(
|
|
"Primary type var < Atom property var",
|
|
true,
|
|
Variable.v_is_tuple() < Variable.v_atom_eq(:anything)
|
|
)
|
|
|
|
# Within Category 2: alt < beq < cgt
|
|
test(
|
|
"Integer :lt var < Integer :eq var",
|
|
true,
|
|
Variable.v_int_lt(10) < Variable.v_int_eq(10)
|
|
)
|
|
|
|
test(
|
|
"Integer :eq var < Integer :gt var",
|
|
true,
|
|
Variable.v_int_eq(10) < Variable.v_int_gt(10)
|
|
)
|
|
|
|
# Within Category 2: comparison of value
|
|
test(
|
|
"Integer :eq(5) var < Integer :eq(10) var",
|
|
true,
|
|
Variable.v_int_eq(5) < Variable.v_int_eq(10)
|
|
)
|
|
|
|
# Within Category 4: comparison of index
|
|
test(
|
|
"Tuple elem(0) var < Tuple elem(1) var",
|
|
true,
|
|
Variable.v_tuple_elem_pred(0, Variable.v_is_atom()) <
|
|
Variable.v_tuple_elem_pred(1, Variable.v_is_atom())
|
|
)
|
|
|
|
# Within Category 4, same index: comparison of nested var
|
|
test(
|
|
"Tuple elem(0, atom) var < Tuple elem(0, int) var",
|
|
true,
|
|
Variable.v_tuple_elem_pred(0, Variable.v_is_atom()) <
|
|
Variable.v_tuple_elem_pred(0, Variable.v_is_integer())
|
|
)
|
|
|
|
IO.inspect(Variable.v_list_all_elements_are(:atom),
|
|
label: "Variable.v_list_all_elements_are(:atom)"
|
|
)
|
|
|
|
IO.inspect(Variable.v_list_is_empty(), label: "Variable.v_list_is_empty()")
|
|
|
|
test(
|
|
"List :a_all_elements var < List :b_is_empty var",
|
|
true,
|
|
Variable.v_list_all_elements_are(:atom) < Variable.v_list_is_empty()
|
|
)
|
|
|
|
test(
|
|
"List :b_is_empty var < List :c_head var",
|
|
true,
|
|
Variable.v_list_is_empty() < Variable.v_list_head_pred(Variable.v_is_atom())
|
|
)
|
|
|
|
test(
|
|
"List :c_head var < List :tail var",
|
|
true,
|
|
Variable.v_list_head_pred(Variable.v_is_atom()) <
|
|
Variable.v_list_tail_pred(Variable.v_is_atom())
|
|
)
|
|
|
|
# --- Final Report ---
|
|
failures = Process.get(:test_failures, [])
|
|
|
|
if failures == [] do
|
|
IO.puts("\n✅ All Tdd.Variable tests passed!")
|
|
else
|
|
IO.puts("\n❌ Found #{length(failures)} test failures.")
|
|
end
|
|
end
|
|
end
|
|
|
|
defmodule ConsistencyEngineTests do
|
|
alias Tdd.Consistency.Engine
|
|
alias Tdd.Variable
|
|
|
|
defp test(name, expected, assumptions_map) do
|
|
result = Engine.check(assumptions_map)
|
|
# ... test reporting logic ...
|
|
is_ok = expected == result
|
|
status = if is_ok, do: "[PASS]", else: "[FAIL]"
|
|
IO.puts("#{status} #{name}")
|
|
|
|
unless is_ok do
|
|
IO.puts(" Expected: #{inspect(expected)}, Got: #{inspect(result)}")
|
|
Process.put(:test_failures, [name | Process.get(:test_failures, [])])
|
|
end
|
|
end
|
|
|
|
def run() do
|
|
IO.puts("\n--- Running Tdd.Consistency.Engine Tests ---")
|
|
Process.put(:test_failures, [])
|
|
|
|
# --- Section: Basic & Implication Tests ---
|
|
IO.puts("\n--- Section: Basic & Implication Tests ---")
|
|
test("An empty assumption map is consistent", :consistent, %{})
|
|
test("A single valid assumption is consistent", :consistent, %{Variable.v_is_atom() => true})
|
|
|
|
test(
|
|
"An implied contradiction is caught by expander",
|
|
:contradiction,
|
|
%{Variable.v_atom_eq(:foo) => true, Variable.v_is_atom() => false}
|
|
)
|
|
|
|
test(
|
|
"An implied contradiction is caught by expander",
|
|
:contradiction,
|
|
%{Variable.v_atom_eq(:foo) => true, Variable.v_is_atom() => false}
|
|
)
|
|
|
|
test(
|
|
"Implication creates a consistent set",
|
|
:consistent,
|
|
# implies is_atom=true
|
|
%{Variable.v_atom_eq(:foo) => true}
|
|
)
|
|
|
|
# --- Section: Primary Type Exclusivity ---
|
|
IO.puts("\n--- Section: Primary Type Exclusivity ---")
|
|
|
|
test(
|
|
"Two primary types cannot both be true",
|
|
:contradiction,
|
|
%{Variable.v_is_atom() => true, Variable.v_is_integer() => true}
|
|
)
|
|
|
|
test(
|
|
"Two primary types implied to be true is a contradiction",
|
|
:contradiction,
|
|
%{Variable.v_atom_eq(:foo) => true, Variable.v_int_eq(5) => true}
|
|
)
|
|
|
|
test(
|
|
"One primary type true and another false is consistent",
|
|
:consistent,
|
|
%{Variable.v_is_atom() => true, Variable.v_is_integer() => false}
|
|
)
|
|
|
|
# --- Section: Atom Consistency ---
|
|
IO.puts("\n--- Section: Atom Consistency ---")
|
|
|
|
test(
|
|
"An atom cannot equal two different values",
|
|
:contradiction,
|
|
%{Variable.v_atom_eq(:foo) => true, Variable.v_atom_eq(:bar) => true}
|
|
)
|
|
|
|
test(
|
|
"An atom can equal one value",
|
|
:consistent,
|
|
%{Variable.v_atom_eq(:foo) => true}
|
|
)
|
|
|
|
# --- Section: List Flat Consistency ---
|
|
IO.puts("\n--- Section: List Flat Consistency ---")
|
|
|
|
test(
|
|
"A list cannot be empty and have a head property",
|
|
:contradiction,
|
|
%{
|
|
Variable.v_list_is_empty() => true,
|
|
Variable.v_list_head_pred(Variable.v_is_atom()) => true
|
|
}
|
|
)
|
|
|
|
test(
|
|
"A non-empty list can have a head property",
|
|
:consistent,
|
|
%{
|
|
Variable.v_list_is_empty() => false,
|
|
Variable.v_list_head_pred(Variable.v_is_atom()) => true
|
|
}
|
|
)
|
|
|
|
test(
|
|
"A non-empty list is implied by head property",
|
|
:consistent,
|
|
# implies is_empty=false
|
|
%{Variable.v_list_head_pred(Variable.v_is_atom()) => true}
|
|
)
|
|
|
|
# --- Section: Integer Consistency ---
|
|
IO.puts("\n--- Section: Integer Consistency ---")
|
|
test("int == 5 is consistent", :consistent, %{Variable.v_int_eq(5) => true})
|
|
|
|
test("int == 5 AND int == 10 is a contradiction", :contradiction, %{
|
|
Variable.v_int_eq(5) => true,
|
|
Variable.v_int_eq(10) => true
|
|
})
|
|
|
|
test("int < 10 AND int > 20 is a contradiction", :contradiction, %{
|
|
Variable.v_int_lt(10) => true,
|
|
Variable.v_int_gt(20) => true
|
|
})
|
|
|
|
test("int > 5 AND int < 4 is a contradiction", :contradiction, %{
|
|
Variable.v_int_gt(5) => true,
|
|
Variable.v_int_lt(4) => true
|
|
})
|
|
|
|
# 6
|
|
test("int > 5 AND int < 7 is consistent", :consistent, %{
|
|
Variable.v_int_gt(5) => true,
|
|
Variable.v_int_lt(7) => true
|
|
})
|
|
|
|
test("int == 5 AND int < 3 is a contradiction", :contradiction, %{
|
|
Variable.v_int_eq(5) => true,
|
|
Variable.v_int_lt(3) => true
|
|
})
|
|
|
|
test("int == 5 AND int > 10 is a contradiction", :contradiction, %{
|
|
Variable.v_int_eq(5) => true,
|
|
Variable.v_int_gt(10) => true
|
|
})
|
|
|
|
test("int == 5 AND int > 3 is consistent", :consistent, %{
|
|
Variable.v_int_eq(5) => true,
|
|
Variable.v_int_gt(3) => true
|
|
})
|
|
|
|
# --- Final Report ---
|
|
failures = Process.get(:test_failures, [])
|
|
|
|
if failures == [] do
|
|
IO.puts("\n✅ All Consistency.Engine tests passed!")
|
|
else
|
|
IO.puts("\n❌ Found #{length(failures)} test failures.")
|
|
end
|
|
end
|
|
end
|
|
|
|
# defmodule TddAlgoTests do
|
|
# alias Tdd.Store
|
|
# alias Tdd.Variable
|
|
# alias Tdd.Algo
|
|
# alias Tdd.TypeSpec # We need this to create stable variables
|
|
#
|
|
# # --- Test Helper ---
|
|
# defp test(name, expected, result) do
|
|
# # A simple equality test is sufficient here.
|
|
# if expected == result do
|
|
# IO.puts("[PASS] #{name}")
|
|
# else
|
|
# IO.puts("[FAIL] #{name}")
|
|
# IO.puts(" Expected: #{inspect(expected)}")
|
|
# IO.puts(" Got: #{inspect(result)}")
|
|
# Process.put(:test_failures, [name | Process.get(:test_failures, [])])
|
|
# end
|
|
# end
|
|
#
|
|
# # Helper to pretty print a TDD for debugging
|
|
# defp print_tdd(id, indent \\ 0) do
|
|
# prefix = String.duplicate(" ", indent)
|
|
# case Store.get_node(id) do
|
|
# {:ok, details} ->
|
|
# IO.puts("#{prefix}ID #{id}: #{inspect(details)}")
|
|
# case details do
|
|
# {_var, y, n, d} ->
|
|
# IO.puts("#{prefix} Yes ->"); print_tdd(y, indent + 1)
|
|
# IO.puts("#{prefix} No ->"); print_tdd(n, indent + 1)
|
|
# IO.puts("#{prefix} DC ->"); print_tdd(d, indent + 1)
|
|
# _ -> :ok
|
|
# end
|
|
# {:error, reason} ->
|
|
# IO.puts("#{prefix}ID #{id}: Error - #{reason}")
|
|
# end
|
|
# end
|
|
#
|
|
# # --- Test Runner ---
|
|
# def run() do
|
|
# IO.puts("\n--- Running Tdd.Algo & Tdd.Consistency.Engine Tests ---")
|
|
# Process.put(:test_failures, [])
|
|
#
|
|
# # Setup: Initialize the store and define some basic TDDs using the new modules.
|
|
# Store.init()
|
|
# true_id = Store.true_node_id()
|
|
# false_id = Store.false_node_id()
|
|
#
|
|
# # --- Manually build some basic type TDDs for testing ---
|
|
# # t_atom = if is_atom then true else false
|
|
# t_atom = Store.find_or_create_node(Variable.v_is_atom(), true_id, false_id, false_id)
|
|
# # t_int = if is_int then true else false
|
|
# t_int = Store.find_or_create_node(Variable.v_is_integer(), true_id, false_id, false_id)
|
|
#
|
|
# # t_foo = if is_atom then (if value == :foo then true else false) else false
|
|
# foo_val_check = Store.find_or_create_node(Variable.v_atom_eq(:foo), true_id, false_id, false_id)
|
|
# t_foo = Store.find_or_create_node(Variable.v_is_atom(), foo_val_check, false_id, false_id)
|
|
#
|
|
# # t_bar = if is_atom then (if value == :bar then true else false) else false
|
|
# bar_val_check = Store.find_or_create_node(Variable.v_atom_eq(:bar), true_id, false_id, false_id)
|
|
# t_bar = Store.find_or_create_node(Variable.v_is_atom(), bar_val_check, false_id, false_id)
|
|
#
|
|
# # --- Section: Negate Algorithm ---
|
|
# IO.puts("\n--- Section: Algo.negate ---")
|
|
# negated_true = Algo.negate(true_id)
|
|
# test("negate(true) is false", false_id, negated_true)
|
|
# negated_false = Algo.negate(false_id)
|
|
# test("negate(false) is true", true_id, negated_false)
|
|
# # Double negation should be identity
|
|
# test("negate(negate(t_atom)) is t_atom", t_atom, Algo.negate(Algo.negate(t_atom)))
|
|
#
|
|
# # --- Section: Apply Algorithm (Union & Intersection) ---
|
|
# IO.puts("\n--- Section: Algo.apply (raw structural operations) ---")
|
|
# op_sum = fn
|
|
# :true_terminal, _ -> :true_terminal; _, :true_terminal -> :true_terminal
|
|
# t, :false_terminal -> t; :false_terminal, t -> t
|
|
# end
|
|
# op_intersect = fn
|
|
# :false_terminal, _ -> :false_terminal; _, :false_terminal -> :false_terminal
|
|
# t, :true_terminal -> t; :true_terminal, t -> t
|
|
# end
|
|
#
|
|
# # atom | int
|
|
# sum_atom_int = Algo.apply(:sum, op_sum, t_atom, t_int)
|
|
# # The result should be a node that checks is_atom, then if false, checks is_int
|
|
# # We expect a structure like: if is_atom -> true, else -> t_int
|
|
# is_atom_node = {Variable.v_is_atom(), true_id, t_int, t_int}
|
|
# expected_sum_structure_id = Store.find_or_create_node(elem(is_atom_node, 0), elem(is_atom_node, 1), elem(is_atom_node, 2), elem(is_atom_node, 3))
|
|
# test("Structure of 'atom | int' is correct", expected_sum_structure_id, sum_atom_int)
|
|
#
|
|
# # :foo & :bar (structurally, before simplification)
|
|
# # It should build a tree that checks is_atom, then value==:foo, then value==:bar
|
|
# # This will be complex, but the key is that it's NOT the false_id yet.
|
|
# intersect_foo_bar_raw = Algo.apply(:intersect, op_intersect, t_foo, t_bar)
|
|
# test(":foo & :bar (raw) is not the false node", false, intersect_foo_bar_raw == false_id)
|
|
#
|
|
# # --- Section: Simplify Algorithm (Flat Types) ---
|
|
# IO.puts("\n--- Section: Algo.simplify (with Consistency.Engine) ---")
|
|
#
|
|
# # An impossible structure: node that requires a value to be an atom AND an integer
|
|
# # This tests the `check_primary_exclusivity` rule.
|
|
# contradictory_assumptions = %{Variable.v_is_atom() => true, Variable.v_is_integer() => true}
|
|
# # Simplifying ANYTHING under contradictory assumptions should yield `false`.
|
|
# simplified_under_contradiction = Algo.simplify(true_id, contradictory_assumptions)
|
|
# test("Simplifying under contradictory assumptions (atom & int) results in false", false_id, simplified_under_contradiction)
|
|
#
|
|
# # Test implication: A property implies its primary type
|
|
# # A value being `:foo` implies it is an atom.
|
|
# assumptions_with_foo = %{Variable.v_atom_eq(:foo) => true}
|
|
# # If we simplify t_int under this assumption, it should become false.
|
|
# # The engine expands to `{is_atom: true, value==:foo: true}`. Then it sees that
|
|
# # the t_int node's variable `is_integer` must be false (from exclusivity rule).
|
|
# simplified_int_given_foo = Algo.simplify(t_int, assumptions_with_foo)
|
|
# test("Simplifying 'integer' given 'value==:foo' results in false", false_id, simplified_int_given_foo)
|
|
#
|
|
# # Now, let's simplify the raw intersection of :foo and :bar
|
|
# simplified_foo_bar = Algo.simplify(intersect_foo_bar_raw, %{})
|
|
# # The simplify algorithm should discover the contradiction that an atom cannot be
|
|
# # both :foo and :bar at the same time. (This requires `check_atom_consistency` to be implemented).
|
|
# # For now, we stub it and test the plumbing.
|
|
# # Let's test a simpler contradiction that we *have* implemented.
|
|
# intersect_atom_int_raw = Algo.apply(:intersect, op_intersect, t_atom, t_int)
|
|
# simplified_atom_int = Algo.simplify(intersect_atom_int_raw, %{})
|
|
# test("Simplifying 'atom & int' results in false", false_id, simplified_atom_int)
|
|
#
|
|
# # Test path collapsing
|
|
# # If we simplify 'atom | int' under the assumption 'is_atom == true', it should become `true`.
|
|
# simplified_sum_given_atom = Algo.simplify(sum_atom_int, %{Variable.v_is_atom() => true})
|
|
# test("Simplifying 'atom | int' given 'is_atom==true' results in true", true_id, simplified_sum_given_atom)
|
|
# # If we simplify 'atom | int' under the assumption 'is_atom == false', it should become `t_int`.
|
|
# simplified_sum_given_not_atom = Algo.simplify(sum_atom_int, %{Variable.v_is_atom() => false})
|
|
# test("Simplifying 'atom | int' given 'is_atom==false' results in 'integer'", t_int, simplified_sum_given_not_atom)
|
|
#
|
|
#
|
|
# # --- Final Report ---
|
|
# failures = Process.get(:test_failures, [])
|
|
# if failures == [] do
|
|
# IO.puts("\n✅ All Tdd.Algo tests passed!")
|
|
# else
|
|
# IO.puts("\n❌ Found #{length(failures)} test failures.")
|
|
# # Optional: print details of failed tests if needed
|
|
# end
|
|
# end
|
|
# end
|
|
defmodule TypeReconstructorTests do
|
|
alias Tdd.TypeReconstructor
|
|
alias Tdd.Variable
|
|
alias Tdd.TypeSpec
|
|
|
|
defp test(name, expected_spec, assumptions) do
|
|
# Normalize both expected and result for a canonical comparison
|
|
expected = TypeSpec.normalize(expected_spec)
|
|
result = TypeSpec.normalize(TypeReconstructor.spec_from_assumptions(assumptions))
|
|
|
|
is_ok = expected == result
|
|
status = if is_ok, do: "[PASS]", else: "[FAIL]"
|
|
IO.puts("#{status} #{name}")
|
|
|
|
unless is_ok do
|
|
IO.puts(" Expected: #{inspect(expected)}")
|
|
IO.puts(" Got: #{inspect(result)}")
|
|
Process.put(:test_failures, [name | Process.get(:test_failures, [])])
|
|
end
|
|
end
|
|
|
|
def run() do
|
|
IO.puts("\n--- Running Tdd.TypeReconstructor Tests ---")
|
|
Process.put(:test_failures, [])
|
|
|
|
# --- Section: Basic Flat Reconstructions ---
|
|
IO.puts("\n--- Section: Basic Flat Reconstructions ---")
|
|
test("is_atom=true -> atom", :atom, %{Variable.v_is_atom() => true})
|
|
test("is_atom=false -> ¬atom", {:negation, :atom}, %{Variable.v_is_atom() => false})
|
|
|
|
test(
|
|
"is_atom=true AND value==:foo -> :foo",
|
|
{:literal, :foo},
|
|
%{Variable.v_is_atom() => true, Variable.v_atom_eq(:foo) => true}
|
|
)
|
|
|
|
test(
|
|
"is_atom=true AND value!=:foo -> atom & ¬:foo",
|
|
{:intersect, [:atom, {:negation, {:literal, :foo}}]},
|
|
%{Variable.v_is_atom() => true, Variable.v_atom_eq(:foo) => false}
|
|
)
|
|
|
|
test(
|
|
"is_integer=true AND int==5 -> 5",
|
|
{:literal, 5},
|
|
%{Variable.v_is_integer() => true, Variable.v_int_eq(5) => true}
|
|
)
|
|
|
|
test(
|
|
"is_list=true AND is_empty=true -> []",
|
|
{:literal, []},
|
|
%{Variable.v_is_list() => true, Variable.v_list_is_empty() => true}
|
|
)
|
|
|
|
# --- Section: Combined Flat Reconstructions ---
|
|
IO.puts("\n--- Section: Combined Flat Reconstructions ---")
|
|
|
|
test(
|
|
"int > 10 AND int < 20",
|
|
# This is complex. Our simple reconstructor makes two separate ranges.
|
|
# A more advanced one would combine them into a single {:integer_range, 11, 19}.
|
|
# For now, we test the current behavior.
|
|
{:intersect,
|
|
[
|
|
:integer,
|
|
{:integer_range, 11, :pos_inf},
|
|
{:integer_range, :neg_inf, 19}
|
|
]},
|
|
%{Variable.v_int_gt(10) => true, Variable.v_int_lt(20) => true}
|
|
)
|
|
|
|
# --- Section: Recursive Reconstructions (Simplified) ---
|
|
IO.puts("\n--- Section: Recursive Reconstructions ---")
|
|
# This tests the partitioning and recursive call logic.
|
|
# Our simple implementation of recursive cases means we can only test simple things.
|
|
test(
|
|
"head is an atom",
|
|
{:intersect, [:list, {:cons, :atom, :any}]},
|
|
# Assumption for `is_list=true` is implied by `v_list_head_pred`
|
|
%{Variable.v_list_head_pred(Variable.v_is_atom()) => true}
|
|
)
|
|
|
|
# Note: The recursive tests are limited by the simplifications made in the
|
|
# implementation (e.g., tuple reconstruction). A full implementation would
|
|
# require more context (like tuple size) to be passed down.
|
|
|
|
# --- Final Report ---
|
|
failures = Process.get(:test_failures, [])
|
|
|
|
if failures == [] do
|
|
IO.puts("\n✅ All TypeReconstructor tests passed!")
|
|
else
|
|
IO.puts("\n❌ Found #{length(failures)} test failures.")
|
|
end
|
|
end
|
|
end
|
|
|
|
defmodule CompilerAlgoTests do
|
|
alias Tdd.Compiler
|
|
alias Tdd.Store
|
|
alias Tdd.Algo
|
|
|
|
# High-level helpers that mimic the final API
|
|
defp is_subtype(spec1, spec2) do
|
|
id1 = Compiler.spec_to_id(spec1)
|
|
id2 = Compiler.spec_to_id(spec2)
|
|
# The subtyping check is: `A <: B` if and only if `A & ~B` is empty (`:none`).
|
|
neg_id2 = Algo.negate(id2)
|
|
|
|
op_intersect = fn
|
|
:false_terminal, _ -> :false_terminal
|
|
_, :false_terminal -> :false_terminal
|
|
t, :true_terminal -> t
|
|
:true_terminal, t -> t
|
|
# Default case for non-terminal nodes, though apply handles recursion
|
|
_t1, _t2 -> :non_terminal
|
|
end
|
|
|
|
intersect_id = Algo.apply(:intersect, op_intersect, id1, neg_id2)
|
|
final_id = Algo.simplify(intersect_id)
|
|
final_id == Store.false_node_id()
|
|
end
|
|
|
|
defp are_equivalent(spec1, spec2) do
|
|
Compiler.spec_to_id(spec1) == Compiler.spec_to_id(spec2)
|
|
end
|
|
|
|
defp is_contradiction(spec) do
|
|
Compiler.spec_to_id(spec) == Store.false_node_id()
|
|
end
|
|
|
|
defp test_subtype(name, expected, s1, s2), do: test(name, expected, is_subtype(s1, s2))
|
|
defp test_equiv(name, expected, s1, s2), do: test(name, expected, are_equivalent(s1, s2))
|
|
defp test_contradiction(name, expected \\ true), do: &test(name, expected, is_contradiction(&1))
|
|
|
|
defp test(name, exp, res) do
|
|
is_ok = exp == res
|
|
status = if is_ok, do: "[PASS]", else: "[FAIL]"
|
|
IO.puts("#{status} #{name}")
|
|
|
|
unless is_ok do
|
|
IO.puts(" Expected: #{inspect(exp)}")
|
|
IO.puts(" Got: #{inspect(res)}")
|
|
Process.put(:test_failures, [name | Process.get(:test_failures, [])])
|
|
end
|
|
end
|
|
|
|
def run() do
|
|
IO.puts("\n--- Running Compiler & Algo Integration Tests ---")
|
|
Process.put(:test_failures, [])
|
|
# Setup
|
|
Tdd.Store.init()
|
|
|
|
# --- Section: Basic Compilation & Equivalence ---
|
|
IO.puts("\n--- Section: Basic Equivalences ---")
|
|
test_equiv("atom & any == atom", true, {:intersect, [:atom, :any]}, :atom)
|
|
test_equiv("atom | none == atom", true, {:union, [:atom, :none]}, :atom)
|
|
test_equiv("atom & int == none", true, {:intersect, [:atom, :integer]}, :none)
|
|
test_equiv("¬(¬atom) == atom", true, {:negation, {:negation, :atom}}, :atom)
|
|
test_equiv("atom | atom == atom", true, {:union, [:atom, :atom]}, :atom)
|
|
|
|
# --- Section: Basic Subtyping ---
|
|
IO.puts("\n--- Section: Basic Subtyping ---")
|
|
test_subtype(":foo <: atom", true, {:literal, :foo}, :atom)
|
|
test_subtype("atom <: :foo", false, :atom, {:literal, :foo})
|
|
test_subtype(":foo <: integer", false, {:literal, :foo}, :integer)
|
|
test_subtype("int==5 <: integer", true, {:literal, 5}, :integer)
|
|
test_subtype("none <: atom", true, :none, :atom)
|
|
test_subtype("atom <: any", true, :atom, :any)
|
|
|
|
# --- Section: Integer Range Logic ---
|
|
IO.puts("\n--- Section: Integer Range Logic ---")
|
|
int_5_to_10 = {:integer_range, 5, 10}
|
|
int_7_to_8 = {:integer_range, 7, 8}
|
|
int_15_to_20 = {:integer_range, 15, 20}
|
|
int_0_to_100 = {:integer_range, 0, 100}
|
|
|
|
test_subtype("range(7..8) <: range(5..10)", true, int_7_to_8, int_5_to_10)
|
|
test_subtype("range(5..10) <: range(7..8)", false, int_5_to_10, int_7_to_8)
|
|
test_subtype("range(5..10) <: range(15..20)", false, int_5_to_10, int_15_to_20)
|
|
|
|
test_equiv(
|
|
"range(5..10) & range(7..8) == range(7..8)",
|
|
true,
|
|
{:intersect, [int_5_to_10, int_7_to_8]},
|
|
int_7_to_8
|
|
)
|
|
|
|
test_equiv(
|
|
"range(5..10) & range(0..100) == range(5..10)",
|
|
true,
|
|
{:intersect, [int_5_to_10, int_0_to_100]},
|
|
int_5_to_10
|
|
)
|
|
|
|
test_equiv(
|
|
"range(5..10) | range(7..8) == range(5..10)",
|
|
true,
|
|
{:union, [int_5_to_10, int_7_to_8]},
|
|
int_5_to_10
|
|
)
|
|
|
|
# --- Section: Contradictions & Simplifications ---
|
|
IO.puts("\n--- Section: Contradictions & Simplifications ---")
|
|
|
|
test_contradiction("atom & integer").({:intersect, [:atom, :integer]})
|
|
|
|
test_contradiction(":foo & :bar").({:intersect, [{:literal, :foo}, {:literal, :bar}]})
|
|
|
|
test_contradiction("atom & (int==5)").({:intersect, [:atom, {:literal, 5}]})
|
|
|
|
test_contradiction("range(5..10) & range(15..20)").({:intersect, [int_5_to_10, int_15_to_20]})
|
|
|
|
test_contradiction("integer & ¬integer").({:intersect, [:integer, {:negation, :integer}]})
|
|
|
|
# --- Section: Subtype Reduction in Normalization ---
|
|
IO.puts("\n--- Section: Subtype Reduction Logic ---")
|
|
|
|
test_equiv(
|
|
"(:foo | :bar | atom) simplifies to atom",
|
|
true,
|
|
{:union, [{:literal, :foo}, {:literal, :bar}, :atom]},
|
|
:atom
|
|
)
|
|
|
|
test_equiv(
|
|
"(range(5..10) | integer) simplifies to integer",
|
|
true,
|
|
{:union, [int_5_to_10, :integer]},
|
|
:integer
|
|
)
|
|
|
|
test_equiv(
|
|
"(:foo & atom) simplifies to :foo",
|
|
true,
|
|
{:intersect, [{:literal, :foo}, :atom]},
|
|
{:literal, :foo}
|
|
)
|
|
|
|
test_equiv(
|
|
"(range(5..10) & integer) simplifies to range(5..10)",
|
|
true,
|
|
{:intersect, [int_5_to_10, :integer]},
|
|
int_5_to_10
|
|
)
|
|
|
|
# --- Section: Logical Laws (Distribution and De Morgan's) ---
|
|
IO.puts("\n--- Section: Logical Laws ---")
|
|
|
|
# De Morgan's Law: ¬(A | B) == (¬A & ¬B)
|
|
spec_not_a_or_b = {:negation, {:union, [:atom, :integer]}}
|
|
spec_not_a_and_not_b = {:intersect, [{:negation, :atom}, {:negation, :integer}]}
|
|
|
|
test_equiv(
|
|
"De Morgan's (¬(A|B) == ¬A & ¬B) holds",
|
|
true,
|
|
spec_not_a_or_b,
|
|
spec_not_a_and_not_b
|
|
)
|
|
|
|
# De Morgan's Law: ¬(A & B) == (¬A | ¬B)
|
|
spec_not_a_and_b = {:negation, {:intersect, [{:literal, :foo}, int_5_to_10]}}
|
|
spec_not_a_or_not_b = {:union, [{:negation, {:literal, :foo}}, {:negation, int_5_to_10}]}
|
|
|
|
test_equiv(
|
|
"De Morgan's (¬(A&B) == ¬A | ¬B) holds",
|
|
true,
|
|
spec_not_a_and_b,
|
|
spec_not_a_or_not_b
|
|
)
|
|
|
|
# Distributive Law: A & (B | C) == (A & B) | (A & C)
|
|
spec_a = :integer
|
|
spec_b = {:integer_range, 0, 10}
|
|
spec_c = {:integer_range, 20, 30}
|
|
spec_dist_lhs = {:intersect, [spec_a, {:union, [spec_b, spec_c]}]}
|
|
spec_dist_rhs = {:union, [{:intersect, [spec_a, spec_b]}, {:intersect, [spec_a, spec_c]}]}
|
|
|
|
test_equiv(
|
|
"Distributive Law (A & (B|C)) holds",
|
|
true,
|
|
spec_dist_lhs,
|
|
spec_dist_rhs
|
|
)
|
|
|
|
# --- Final Report ---
|
|
failures = Process.get(:test_failures, [])
|
|
|
|
if failures == [] do
|
|
IO.puts("\n✅ All Compiler & Algo Integration tests passed!")
|
|
else
|
|
IO.puts("\n❌ Found #{length(failures)} test failures.")
|
|
end
|
|
end
|
|
end
|
|
|
|
TypeSpecTests.run()
|
|
TddStoreTests.run()
|
|
TddVariableTests.run()
|
|
# TddAlgoTests.run()
|
|
ConsistencyEngineTests.run()
|
|
TypeReconstructorTests.run()
|
|
# CompilerAlgoTests.run()
|