elipl/types.pl
Kacper Marzecki 4f13a98189 asd
2025-05-29 16:53:36 +02:00

255 lines
13 KiB
Prolog

:- module(types,
[ infer_type/3, % infer_type(+AST, +Env, -Type)
unify_types/3, % unify_types(+Type1, +Type2, -UnifiedType)
refine_env/4, % refine_env(+Var, +Type, +EnvIn, -EnvOut)
get_type/3, % get_type(+Var, +Env, -Type)
% Type representations (examples)
type_number/0, type_string/0, type_boolean/0, type_list_nil/0,
type_list/1, type_tuple/1, type_union/2, type_intersection/2, type_negation/1,
type_any/0, type_never/0,
initial_env/1
]).
:- use_module(log).
:- discontiguous unify_types/3.
:- discontiguous infer_type/3. % Added to handle infer_type_arg/3 in between
% --- Type Representations (as atoms/compound terms) ---
type_number :- _ = number.
type_string :- _ = string.
type_boolean :- _ = boolean. % Represents the type 'boolean'
type_list_nil :- _ = list_nil. % AST node for empty list literal '()'
type_list(_T) :- _ = list(_). % _T is intentionally a singleton, structure check: list(Anything)
type_tuple(Ts) :- _ = tuple(Ts), is_list(Ts). % Ts is used, not singleton
type_union(T1, T2) :- _ = union(T1, T2). % T1, T2 are used, not singletons
type_intersection(T1, T2) :- _ = intersection(T1, T2). % T1, T2 are used, not singletons
type_negation(T) :- _ = negation(T). % T is used, not singleton
type_any :- _ = any. % Top type
type_never :- _ = never. % Bottom type, result of failed branches or contradictions
% --- Environment ---
% Env is a list of Var:Type pairs.
initial_env([]).
get_type(Var, [Var:Type | _], Type) :- !.
get_type(Var, [_ | RestEnv], Type) :- get_type(Var, RestEnv, Type).
get_type(Var, [], _) :-
log(error, unbound_variable(Var, 'unknown_location')), % Location should be passed
fail.
refine_env(Var, Type, EnvIn, [Var:Type | EnvSansOldBinding]) :-
delete(EnvIn, Var:_, EnvSansOldBinding), % EnvSansOldBinding is EnvIn with all Var:_ bindings removed.
log(type_refinement, env_refined(Var, Type)).
% --- Type Inference ---
infer_type(int(_), _Env, number) :- log(type_inference, 'Integer literal -> number').
infer_type(string_val(_), _Env, string) :- log(type_inference, 'String literal -> string').
infer_type(bool(_), _Env, boolean) :- log(type_inference, 'Boolean literal -> boolean').
infer_type(list_nil, _Env, list(never)) :- log(type_inference, 'Empty list literal -> list(never)'). % Or a polymorphic list type
infer_type(id(Var), Env, Type) :-
( get_type(Var, Env, Type) ->
log(type_inference, id(Var) -> Type)
; log(error, type_error(unbound_variable(Var), id(Var))),
Type = never, % Or fail, depending on error handling strategy
explain_error(unbound_variable(Var, id(Var)), _Msg)
).
infer_type(let(Var, ValueAst, BodyAst), EnvIn, BodyType) :-
log(type_inference, 'Inferring type for let expression'),
infer_type(ValueAst, EnvIn, ValueType),
log(type_inference, let_value(Var, ValueType)),
refine_env(Var, ValueType, EnvIn, EnvMid),
infer_type(BodyAst, EnvMid, BodyType),
log(type_inference, let_body(BodyType)).
infer_type(if(CondAst, ThenAst, ElseAst), EnvIn, IfType) :-
log(type_inference, 'Inferring type for if expression'),
infer_type(CondAst, EnvIn, CondType),
( CondType == boolean -> true
; log(error, type_error(expected_boolean_condition, CondAst)), IfType = never, fail
),
% Flow-sensitive refinement example:
( CondAst = is_number(id(X)) -> % If condition is is_number(X)
log(type_inference, flow_refinement_condition(is_number(id(X)))),
refine_env(X, number, EnvIn, EnvThen) % X is number in Then branch
; EnvThen = EnvIn % No specific refinement from condition structure
),
infer_type(ThenAst, EnvThen, ThenType),
% For Else branch, if CondAst was `is_number(X)`, then X is `not(number)`
( CondAst = is_number(id(X)) ->
get_type(X, EnvIn, OriginalXType), % Get original type of X before refinement
refine_env(X, intersection(OriginalXType, negation(number)), EnvIn, EnvElse)
; EnvElse = EnvIn
),
infer_type(ElseAst, EnvElse, ElseType),
unify_types(ThenType, ElseType, IfType), % Branches must have compatible types
log(type_inference, if_expression(CondType, ThenType, ElseType) -> IfType).
% Example: is_number/1 predicate (built-in)
infer_type(is_number(ArgAst), Env, boolean) :-
log(type_inference, 'Inferring type for is_number/1 call'),
infer_type(ArgAst, Env, _ArgType). % ArgType can be anything, is_number checks it.
% Lambda expressions (placeholder - full function type inference is complex)
infer_type(lambda(_Params, _BodyAst), _Env, any) :- % For (lambda (params...) body)
% A proper implementation would construct a function type: fun_type(ParamTypes, ReturnType)
% This requires inferring types for params (possibly from annotations) and body.
log(type_inference, 'Lambda expression -> any (placeholder)').
% General function application (placeholder - requires function type for FunctorSExpr)
infer_type(apply(FunctorSExpr, ArgsSExprs), Env, any) :- % For ((lambda ...) arg) or (f arg) where f is complex
log(type_inference, 'General application (apply/2) -> any (placeholder)'),
infer_type(FunctorSExpr, Env, FunctorType),
% Infer types of ArgsSExprs
maplist(infer_type_arg(Env), ArgsSExprs, ArgTypes),
log(type_inference, apply_functor_type(FunctorType)),
log(type_inference, apply_arg_types(ArgTypes)).
% A proper implementation would:
% 1. Ensure FunctorType is a function type, e.g., fun_type(ExpectedParamTypes, ReturnType).
% 2. Check Arity and if ArgTypes are subtypes of ExpectedParamTypes.
% 3. Return ReturnType.
% For now, it's 'any'.
infer_type_arg(Env, ArgSExpr, ArgType) :- infer_type(ArgSExpr, Env, ArgType).
% Example: validate_user/1 (hypothetical predicate that narrows type)
% Assume validate_user/1 takes 'any' and if it succeeds, the arg is a 'user_record'.
% This would typically be declared elsewhere (e.g. function signatures)
% For now, we simulate its effect.
infer_type(validate_user(ArgAst), Env, boolean) :- % validate_user returns boolean
log(type_inference, 'Inferring type for validate_user/1 call'),
infer_type(ArgAst, Env, _ArgType).
% The actual refinement happens in the 'then' branch of an 'if' or similar construct
% e.g., if validate_user(x) then ... (x is now user_record)
% Pattern Matching
infer_type(match(ExprAst, Clauses), EnvIn, MatchType) :-
log(type_inference, 'Inferring type for match expression'),
infer_type(ExprAst, EnvIn, ExprType),
infer_clause_types(Clauses, ExprType, EnvIn, ClauseTypes),
( ClauseTypes = [] -> MatchType = never % Or error: non-exhaustive match if not desired
; reduce_types(ClauseTypes, MatchType) % Unify all clause body types
),
log(type_inference, match_result_type(MatchType)).
infer_clause_types([], _ExprType, _EnvIn, []).
infer_clause_types([clause(Pattern, _Guard, BodyAst) | RestClauses], ExprType, EnvIn, [BodyType | RestBodyTypes]) :-
log(type_inference, inferring_clause_pattern(Pattern)),
refine_env_from_pattern(Pattern, ExprType, EnvIn, EnvPattern),
( EnvPattern == fail -> % Pattern doesn't match ExprType or is contradictory
log(type_warning, pattern_will_not_match(Pattern, ExprType)),
BodyType = never % This branch is effectively dead
; infer_type(BodyAst, EnvPattern, BodyType)
),
infer_clause_types(RestClauses, ExprType, EnvIn, RestBodyTypes).
% refine_env_from_pattern/4: (+Pattern, +MatchedExprType, +EnvIn, -EnvOutOrFail)
refine_env_from_pattern(pvar(Name), MatchedExprType, EnvIn, EnvOut) :-
!, refine_env(Name, MatchedExprType, EnvIn, EnvOut).
refine_env_from_pattern(pwild, _MatchedExprType, EnvIn, EnvIn) :- !.
refine_env_from_pattern(pint(_), MatchedExprType, EnvIn, EnvIn) :-
( unify_types(MatchedExprType, number, number) -> true % Check if MatchedExprType is compatible with number
; log(type_error, pattern_type_mismatch(pint, MatchedExprType)), fail
).
refine_env_from_pattern(pstring(_), MatchedExprType, EnvIn, EnvIn) :-
( unify_types(MatchedExprType, string, string) -> true % Check if MatchedExprType is compatible with string
; log(type_error, pattern_type_mismatch(pstring, MatchedExprType)), fail
).
refine_env_from_pattern(pbool(_), MatchedExprType, EnvIn, EnvIn) :- % Added for boolean patterns
( unify_types(MatchedExprType, boolean, boolean) -> true % Check if MatchedExprType is compatible with boolean
; log(type_error, pattern_type_mismatch(pbool, MatchedExprType)), fail
).
refine_env_from_pattern(ptuple(Patterns), MatchedExprType, EnvIn, EnvOut) :-
( MatchedExprType = tuple(ElementTypes) ; MatchedExprType = any ), % Allow matching 'any' as a tuple
( var(ElementTypes) -> % MatchedExprType was 'any' or tuple(_)
length(Patterns, L), length(ElementTypes, L), % Infer arity
maplist(=(any), ElementTypes) % Assume elements are 'any' if not specified
; length(Patterns, L1), length(ElementTypes, L2), L1 == L2 % Check arity
), !,
refine_env_from_patterns(Patterns, ElementTypes, EnvIn, EnvOut).
refine_env_from_pattern(ptuple(_Patterns), MatchedExprType, _EnvIn, fail) :-
log(type_error, pattern_type_mismatch(ptuple, MatchedExprType)), fail.
refine_env_from_pattern(plist(Patterns), MatchedExprType, EnvIn, EnvOut) :-
( MatchedExprType = list(ElementType) ; MatchedExprType = any ),
( var(ElementType) -> ElementType = any ), % If MatchedExprType was 'any' or list(_), treat element type as 'any'
!,
length(Patterns, Len),
length(TypesForPatterns, Len), % Create a list of unbound variables of the same length as Patterns
maplist(=(ElementType), TypesForPatterns), % Unify each variable in TypesForPatterns with ElementType
refine_env_from_patterns(Patterns, TypesForPatterns, EnvIn, EnvOut).
refine_env_from_pattern(plist(_Patterns), MatchedExprType, _EnvIn, fail) :-
\+ (MatchedExprType = list(_); MatchedExprType = any), % Fail only if not a list or any
log(type_error, pattern_type_mismatch(plist, MatchedExprType)),
fail.
refine_env_from_patterns([], [], Env, Env).
refine_env_from_patterns([P|Ps], [T|Ts], EnvIn, EnvOut) :-
refine_env_from_pattern(P, T, EnvIn, EnvMid),
( EnvMid == fail -> EnvOut = fail, !
; refine_env_from_patterns(Ps, Ts, EnvMid, EnvOut)
).
% --- Type Unification ---
unify_types(T, T, T) :- !, log(unification, identical(T)).
unify_types(any, T, T) :- !, log(unification, any_with(T) -> T).
unify_types(T, any, T) :- !, log(unification, T -> T). % Corrected T_with_any to T
unify_types(never, _T, never) :- !, log(unification, 'never involved'). % Or should it be T? Depends on meaning.
unify_types(_T, never, never) :- !, log(unification, 'never involved').
unify_types(list(T1), list(T2), list(TU)) :- !,
unify_types(T1, T2, TU),
log(unification, list(T1, T2) -> list(TU)).
unify_types(tuple(Ts1), tuple(Ts2), tuple(TUs)) :- !,
length(Ts1, L), length(Ts2, L), % Tuples must have same arity
maplist(unify_types, Ts1, Ts2, TUs),
log(unification, tuple(Ts1, Ts2) -> tuple(TUs)).
% Union Type Unification (simplified: create a canonical union)
unify_types(union(A, B), C, union(A, union(B,C))) :- \+ is_union(C), !. % Simplistic, needs canonical form
unify_types(A, union(B, C), union(A, union(B,C))) :- \+ is_union(A), !.
unify_types(union(A1,B1), union(A2,B2), union(A1,union(B1,union(A2,B2)))) :- !. % Very naive
is_union(union(_,_)).
% Intersection (placeholder)
unify_types(intersection(A,B), C, intersection(A,intersection(B,C))) :- !. % Needs proper logic
% Helper to reduce a list of types to a single type (e.g., for match clauses)
reduce_types([T], T) :- !.
reduce_types([T1, T2 | Ts], ResultType) :-
unify_types(T1, T2, UnifiedHead),
( UnifiedHead == never -> ResultType = never, ! % Propagate failure
; reduce_types([UnifiedHead | Ts], ResultType)
).
reduce_types([], never). % Consistent with match behavior for no clauses.
% --- Example Predicate for Type Narrowing ---
% This would be part of function signature definitions.
% For 'validate_user(X)', if it returns true, X's type is refined.
% This is usually handled by the 'if' construct using the boolean result.
% e.g. if validate_user(x) then (env refined for x) else (env not refined or negated refinement)
% Example:
% ?- initial_env(Env), infer_type(if(is_number(id(x)), id(x), string_val("no")), [x:union(number,string)], Type).
% Type = number (because string_val("no") is string, unified with number from then branch, if x is number then x is number, else x is string.
% The unification of number and string should fail, or result in union(number, string).
% The example above needs careful check of unify_types.
% Let's assume unify_types(T1,T2,union(T1,T2)) if they are different base types.
% Corrected unification for disparate types (common supertype or union)
unify_types(T1, T2, union(T1, T2)) :-
% This is a fallback if no other rule matches and T1, T2 are not 'any' or 'never'
T1 \= any, T2 \= any, T1 \= never, T2 \= never,
T1 \= T2, % Not identical
% Ensure not to double-wrap unions unnecessarily (basic check)
\+ (T1 = union(_,_) ; T2 = union(_,_)),
log(unification, disparate_types(T1, T2) -> union(T1,T2)).