Code.require_file("./debug.exs") defmodule Tdd.TypeSpec do @moduledoc """ Defines the `TypeSpec` structure and functions for its manipulation. Normalization includes alpha-conversion, beta-reduction, and a final canonical renaming pass for bound variables. """ # --- Core Types --- @type t :: :any | :none | :atom | :integer | :list | :tuple | {:literal, term()} | {:union, [t()]} | {:intersect, [t()]} | {:negation, t()} | {:tuple, [t()]} | {:cons, head :: t(), tail :: t()} | {:list_of, element :: t()} | {:integer_range, min :: integer() | :neg_inf, max :: integer() | :pos_inf} | {:type_var, name :: atom()} | {:mu, type_variable_name :: atom(), body :: t()} | {:type_lambda, param_names :: [atom()], body :: t()} | {:type_apply, constructor_spec :: t(), arg_specs :: [t()]} @doc """ Converts a `TypeSpec` into its canonical (normalized) form. Performs structural normalization, alpha-conversion, beta-reduction, and a final canonical renaming pass for all bound variables. """ @spec normalize(t()) :: t() def normalize(spec) do {intermediate_normalized, _counter_after_pass1} = normalize_pass1(spec, %{}, 0) {final_spec_before_subtype_redux, _mu_counter, _lambda_counter} = canonical_rename_pass(intermediate_normalized, %{}, 0, 0) apply_subtype_reduction(final_spec_before_subtype_redux) end # Final pass for subtype-based reductions on fully canonical specs defp apply_subtype_reduction(spec) do case spec do {:union, members} -> recursively_reduced_members = Enum.map(members, &apply_subtype_reduction/1) flattened_members = Enum.flat_map(recursively_reduced_members, fn {:union, sub_members} -> sub_members m -> [m] end) unique_no_none = flattened_members |> Enum.reject(&(&1 == :none)) |> Enum.uniq() if Enum.member?(unique_no_none, :any) do :any else # Pass `true` for already_normalized flag to is_subtype? final_members = Enum.reject(unique_no_none, fn member_to_check -> Enum.any?(unique_no_none, fn other_member -> member_to_check != other_member and is_subtype?(member_to_check, other_member, true) end) end) case Enum.sort(final_members) do [] -> :none [single] -> single list_members -> {:union, list_members} end end {:intersect, members} -> recursively_reduced_members = Enum.map(members, &apply_subtype_reduction/1) expanded_flattened_members = Enum.flat_map(recursively_reduced_members, fn {:intersect, sub_members} -> sub_members # get_supertypes expects normalized spec, and its output is also normalized m -> get_supertypes(m, true) # Pass flag end) unique_no_any = expanded_flattened_members |> Enum.reject(&(&1 == :any)) |> Enum.uniq() if Enum.member?(unique_no_any, :none) do :none else # Pass `true` for already_normalized flag to is_subtype? final_members = Enum.reject(unique_no_any, fn member_to_check -> Enum.any?(unique_no_any, fn other_member -> member_to_check != other_member and is_subtype?(other_member, member_to_check, true) end) end) case Enum.sort(final_members) do [] -> :any [single] -> single list_members -> {:intersect, list_members} end end {:negation, body} -> {:negation, apply_subtype_reduction(body)} {:tuple, elements} -> {:tuple, Enum.map(elements, &apply_subtype_reduction/1)} {:cons, head, tail} -> {:cons, apply_subtype_reduction(head), apply_subtype_reduction(tail)} {:mu, var_name, body} -> {:mu, var_name, apply_subtype_reduction(body)} {:type_lambda, params, body} -> {:type_lambda, params, apply_subtype_reduction(body)} {:type_apply, constructor, args} -> {:type_apply, apply_subtype_reduction(constructor), Enum.map(args, &apply_subtype_reduction/1)} atomic_or_literal -> atomic_or_literal end end # ------------------------------------------------------------------ # Pass 1: Structural Normalization, Beta-Reduction, Initial Alpha-Conversion # Returns: {normalized_spec, next_counter} # ------------------------------------------------------------------ defp normalize_pass1(spec, env, counter) do res_tuple = case spec do s when is_atom(s) and s in [:any, :none, :atom, :integer, :list, :tuple] -> {s, counter} {:literal, _val} = lit_spec -> {lit_spec, counter} {:type_var, name} -> {Map.get(env, name, spec), counter} {:negation, sub_spec} -> normalize_negation_pass1(sub_spec, env, counter) {:tuple, elements} -> {normalized_elements, next_counter_after_elements} = map_fold_counter_for_pass1(elements, env, counter, &normalize_pass1/3) {{:tuple, normalized_elements}, next_counter_after_elements} {:cons, head, tail} -> {normalized_head, counter_after_head} = normalize_pass1(head, env, counter) {normalized_tail, counter_after_tail} = normalize_pass1(tail, env, counter_after_head) {{:cons, normalized_head, normalized_tail}, counter_after_tail} {:integer_range, min, max} -> range_spec = if is_integer(min) and is_integer(max) and min > max do :none else {:integer_range, min, max} end {range_spec, counter} {:union, members} -> normalize_union_pass1(members, env, counter) {:intersect, members} -> normalize_intersection_pass1(members, env, counter) {:list_of, element_spec} -> {normalized_element, counter_after_element} = normalize_pass1(element_spec, env, counter) internal_rec_var_name = :"$ListOfInternalRecVar_Pass1$" list_body = {:union, [ {:literal, []}, {:cons, normalized_element, {:type_var, internal_rec_var_name}} ]} normalize_pass1({:mu, internal_rec_var_name, list_body}, env, counter_after_element) {:mu, var_name, body} -> fresh_temp_name = fresh_var_name(:p1_m_var, counter) body_env = Map.put(env, var_name, {:type_var, fresh_temp_name}) {normalized_body, next_counter_after_body} = normalize_pass1(body, body_env, counter + 1) {{:mu, fresh_temp_name, normalized_body}, next_counter_after_body} {:type_lambda, param_names, body} -> {reversed_fresh_temp_names, next_counter_after_params, body_env} = Enum.reduce(param_names, {[], counter, env}, fn param_name, {acc_fresh_names, cnt, current_env} -> fresh_name = fresh_var_name(:p1_lambda_var, cnt) {[fresh_name | acc_fresh_names], cnt + 1, Map.put(current_env, param_name, {:type_var, fresh_name})} end) fresh_temp_param_names = Enum.reverse(reversed_fresh_temp_names) {normalized_body, final_counter} = normalize_pass1(body, body_env, next_counter_after_params) {{:type_lambda, fresh_temp_param_names, normalized_body}, final_counter} {:type_apply, constructor_spec, arg_specs} -> {normalized_constructor, counter_after_constructor} = normalize_pass1(constructor_spec, env, counter) {normalized_arg_specs, counter_after_args} = map_fold_counter_for_pass1(arg_specs, env, counter_after_constructor, &normalize_pass1/3) case normalized_constructor do {:type_lambda, pass1_formal_params, pass1_lambda_body} -> if length(pass1_formal_params) != length(normalized_arg_specs) do raise "TypeSpec.normalize_pass1: Arity mismatch in application. Expected #{length(pass1_formal_params)} args, got #{length(normalized_arg_specs)}. Lambda: #{inspect(normalized_constructor)}, Args: #{inspect(normalized_arg_specs)}" else substitution_map = Map.new(Enum.zip(pass1_formal_params, normalized_arg_specs)) substituted_body = substitute_vars_pass1(pass1_lambda_body, substitution_map, MapSet.new()) normalize_pass1(substituted_body, env, counter_after_args) end _other_constructor -> {{:type_apply, normalized_constructor, normalized_arg_specs}, counter_after_args} end other_spec -> raise "TypeSpec.normalize_pass1: Unhandled spec form: #{inspect(other_spec)}" end res_tuple end defp map_fold_counter_for_pass1(list, env, initial_counter, fun) do Enum.map_reduce(list, initial_counter, fn item, acc_counter -> fun.(item, env, acc_counter) end) end defp substitute_vars_pass1(spec, substitutions, bound_in_scope) do case spec do {:type_var, name} -> if MapSet.member?(bound_in_scope, name) do spec else Map.get(substitutions, name, spec) end {:mu, var_name, body} -> newly_bound_scope = MapSet.put(bound_in_scope, var_name) active_substitutions = Map.delete(substitutions, var_name) {:mu, var_name, substitute_vars_pass1(body, active_substitutions, newly_bound_scope)} {:type_lambda, param_names, body} -> newly_bound_scope = Enum.reduce(param_names, bound_in_scope, &MapSet.put(&2, &1)) active_substitutions = Enum.reduce(param_names, substitutions, &Map.delete(&2, &1)) {:type_lambda, param_names, substitute_vars_pass1(body, active_substitutions, newly_bound_scope)} {:negation, sub} -> {:negation, substitute_vars_pass1(sub, substitutions, bound_in_scope)} {:tuple, elements} -> {:tuple, Enum.map(elements, &substitute_vars_pass1(&1, substitutions, bound_in_scope))} {:cons, h, t} -> {:cons, substitute_vars_pass1(h, substitutions, bound_in_scope), substitute_vars_pass1(t, substitutions, bound_in_scope)} {:list_of, e} -> {:list_of, substitute_vars_pass1(e, substitutions, bound_in_scope)} {:union, members} -> {:union, Enum.map(members, &substitute_vars_pass1(&1, substitutions, bound_in_scope))} {:intersect, members} -> {:intersect, Enum.map(members, &substitute_vars_pass1(&1, substitutions, bound_in_scope))} {:type_apply, con, args} -> new_con = substitute_vars_pass1(con, substitutions, bound_in_scope) new_args = Enum.map(args, &substitute_vars_pass1(&1, substitutions, bound_in_scope)) {:type_apply, new_con, new_args} _atomic_or_simple_spec -> spec end end defp normalize_negation_pass1(sub_spec, env, counter) do {normalized_sub, next_counter} = normalize_pass1(sub_spec, env, counter) res_spec = case normalized_sub do {:negation, inner_spec} -> inner_spec :any -> :none :none -> :any _ -> {:negation, normalized_sub} end {res_spec, next_counter} end defp normalize_union_pass1(members, env, initial_counter) do {list_of_normalized_member_lists, final_counter_after_all_members} = Enum.map_reduce(members, initial_counter, fn member_spec, current_processing_counter -> {normalized_member_spec_term, counter_after_this_member_normalized} = normalize_pass1(member_spec, env, current_processing_counter) members_to_add_to_overall_list = case normalized_member_spec_term do {:union, sub_members} -> sub_members _ -> [normalized_member_spec_term] end {members_to_add_to_overall_list, counter_after_this_member_normalized} end) normalized_and_flattened = List.flatten(list_of_normalized_member_lists) unique_members = normalized_and_flattened |> Enum.reject(&(&1 == :none)) |> Enum.uniq() if Enum.member?(unique_members, :any) do {:any, final_counter_after_all_members} else sorted_for_pass1 = Enum.sort(unique_members) resulting_spec = case sorted_for_pass1 do [] -> :none [single_member] -> single_member list_members -> {:union, list_members} end {resulting_spec, final_counter_after_all_members} end end defp normalize_intersection_pass1(members, env, initial_counter) do {list_of_member_groups, final_counter_after_all_members} = Enum.map_reduce(members, initial_counter, fn member_spec, current_processing_counter -> {normalized_member_spec_term, counter_after_this_member_normalized} = normalize_pass1(member_spec, env, current_processing_counter) expanded_members = case normalized_member_spec_term do {:intersect, sub_members} -> sub_members _ -> get_supertypes_pass1(normalized_member_spec_term) end {expanded_members, counter_after_this_member_normalized} end) normalized_and_flattened_with_supertypes = List.flatten(list_of_member_groups) unique_members = normalized_and_flattened_with_supertypes |> Enum.reject(&(&1 == :any)) |> Enum.uniq() if Enum.member?(unique_members, :none) do {:none, final_counter_after_all_members} else sorted_for_pass1 = Enum.sort(unique_members) resulting_spec = case sorted_for_pass1 do [] -> :any [single_member] -> single_member list_members -> {:intersect, list_members} end {resulting_spec, final_counter_after_all_members} end end defp get_supertypes_pass1(spec) do supertypes = case spec do {:literal, val} when is_atom(val) -> [:atom] {:literal, val} when is_integer(val) -> [:integer] {:literal, val} when is_list(val) -> [:list] {:literal, val} when is_tuple(val) -> [:tuple] {:mu, _v, _body} -> [] {:tuple, _} -> [:tuple] {:integer_range, _, _} -> [:integer] _ -> [] end MapSet.to_list(MapSet.new([spec | supertypes])) end defp canonical_rename_pass(spec, env, mu_c, lambda_c) do case spec do {:mu, old_var_name, body} -> new_canonical_name = fresh_var_name(:m_var, mu_c) body_env = Map.put(env, old_var_name, {:type_var, new_canonical_name}) {renamed_body, next_mu_c, next_lambda_c} = canonical_rename_pass(body, body_env, mu_c + 1, lambda_c) {{:mu, new_canonical_name, renamed_body}, next_mu_c, next_lambda_c} {:type_lambda, old_param_names, body} -> {reversed_new_param_names, next_lambda_c_after_params, body_env} = Enum.reduce(old_param_names, {[], lambda_c, env}, fn old_name, {acc_new_names, current_lc, current_env} -> fresh_canonical_name = fresh_var_name(:lambda_var, current_lc) {[fresh_canonical_name | acc_new_names], current_lc + 1, Map.put(current_env, old_name, {:type_var, fresh_canonical_name})} end) new_canonical_param_names = Enum.reverse(reversed_new_param_names) {renamed_body, final_mu_c, final_lambda_c} = canonical_rename_pass(body, body_env, mu_c, next_lambda_c_after_params) {{:type_lambda, new_canonical_param_names, renamed_body}, final_mu_c, final_lambda_c} {:type_var, name} -> {Map.get(env, name, spec), mu_c, lambda_c} {:negation, sub_spec} -> {renamed_sub, nmc, nlc} = canonical_rename_pass(sub_spec, env, mu_c, lambda_c) {{:negation, renamed_sub}, nmc, nlc} {:tuple, elements} -> {renamed_elements, next_mu_c, next_lambda_c} = map_foldl_counters_for_rename(elements, env, mu_c, lambda_c, &canonical_rename_pass/4) {{:tuple, renamed_elements}, next_mu_c, next_lambda_c} {:cons, head, tail} -> {renamed_head, mu_c_after_head, lambda_c_after_head} = canonical_rename_pass(head, env, mu_c, lambda_c) {renamed_tail, mu_c_after_tail, lambda_c_after_tail} = canonical_rename_pass(tail, env, mu_c_after_head, lambda_c_after_head) {{:cons, renamed_head, renamed_tail}, mu_c_after_tail, lambda_c_after_tail} {:union, members} -> sorted_members = Enum.sort(members) {renamed_members, next_mu_c, next_lambda_c} = map_foldl_counters_for_rename(sorted_members, env, mu_c, lambda_c, &canonical_rename_pass/4) {{:union, Enum.sort(renamed_members)}, next_mu_c, next_lambda_c} {:intersect, members} -> sorted_members = Enum.sort(members) {renamed_members, next_mu_c, next_lambda_c} = map_foldl_counters_for_rename(sorted_members, env, mu_c, lambda_c, &canonical_rename_pass/4) {{:intersect, Enum.sort(renamed_members)}, next_mu_c, next_lambda_c} {:type_apply, constructor_spec, arg_specs} -> {renamed_constructor, mu_c_after_con, lambda_c_after_con} = canonical_rename_pass(constructor_spec, env, mu_c, lambda_c) {renamed_args, mu_c_after_args, lambda_c_after_args} = map_foldl_counters_for_rename(arg_specs, env, mu_c_after_con, lambda_c_after_con, &canonical_rename_pass/4) {{:type_apply, renamed_constructor, renamed_args}, mu_c_after_args, lambda_c_after_args} s when is_atom(s) -> {s, mu_c, lambda_c} {:literal, _} = spec -> {spec, mu_c, lambda_c} {:integer_range, _, _} = spec -> {spec, mu_c, lambda_c} {:list_of, _} = spec -> raise "TypeSpec.canonical_rename_pass: Unexpected :list_of, should be :mu. Spec: #{inspect(spec)}" _other -> raise "TypeSpec.canonical_rename_pass: Unhandled spec form: #{inspect(spec)}" end end defp map_foldl_counters_for_rename(list, env, initial_mu_c, initial_lambda_c, fun) do {reversed_results, final_mu_c, final_lambda_c} = Enum.reduce(list, {[], initial_mu_c, initial_lambda_c}, fn item, {acc_items, mc, lc} -> {processed_item, next_mc, next_lc} = fun.(item, env, mc, lc) {[processed_item | acc_items], next_mc, next_lc} end) {Enum.reverse(reversed_results), final_mu_c, final_lambda_c} end defp fresh_var_name(prefix_atom, counter) do :"#{Atom.to_string(prefix_atom)}#{counter}" end # Public API @spec is_subtype?(t(), t()) :: boolean def is_subtype?(spec1, spec2), do: is_subtype?(spec1, spec2, false) # Internal helper with already_normalized flag @spec is_subtype?(t(), t(), boolean) :: boolean def is_subtype?(spec1, spec2, already_normalized) do cond do spec1 == spec2 -> true spec1 == :none -> true spec2 == :any -> true spec1 == :any and spec2 != :any -> false spec2 == :none and spec1 != :none -> false true -> {norm_s1, norm_s2} = if already_normalized do {spec1, spec2} else {normalize(spec1), normalize(spec2)} end if norm_s1 == norm_s2 do true else do_is_subtype_structural?(norm_s1, norm_s2, MapSet.new()) end end end defp do_is_subtype_structural?(spec1, spec2, visited) do if MapSet.member?(visited, {spec1, spec2}) do true else cond do spec1 == :none -> true spec2 == :any -> true spec1 == :any and spec2 != :any -> false spec2 == :none and spec1 != :none -> false spec1 == spec2 -> true true -> new_visited = MapSet.put(visited, {spec1, spec2}) case {spec1, spec2} do {{:union, members1}, _} -> Enum.all?(members1, &do_is_subtype_structural?(&1, spec2, new_visited)) {_, {:union, members2}} -> Enum.any?(members2, &do_is_subtype_structural?(spec1, &1, new_visited)) {{:intersect, members1}, _} -> Enum.any?(members1, &do_is_subtype_structural?(&1, spec2, new_visited)) {_, {:intersect, members2}} -> Enum.all?(members2, &do_is_subtype_structural?(spec1, &1, new_visited)) {s1, s2} when is_atom(s1) and is_atom(s2) and not (s1 in [:any, :none]) and not (s2 in [:any, :none]) -> s1 == s2 {{:literal, v1}, {:literal, v2}} -> v1 == v2 {{:literal, val}, :atom} when is_atom(val) -> true {{:literal, val}, :integer} when is_integer(val) -> true {{:literal, val}, :list} when is_list(val) -> true {{:literal, val}, :tuple} when is_tuple(val) -> true {{:tuple, elems1}, {:tuple, elems2}} when length(elems1) == length(elems2) -> Enum.zip_with(elems1, elems2, &do_is_subtype_structural?(&1, &2, new_visited)) |> Enum.all?() {{:tuple, _}, :tuple} -> true {{:integer_range, _, _}, :integer} -> true {{:integer_range, min1, max1}, {:integer_range, min2, max2}} -> min1_gte_min2 = case {min1, min2} do {:neg_inf, _} -> min2 == :neg_inf; {_, :neg_inf} -> true; {m1_v,m2_v} when is_integer(m1_v) and is_integer(m2_v) -> m1_v >= m2_v; _ -> false end max1_lte_max2 = case {max1, max2} do {:pos_inf, _} -> max2 == :pos_inf; {_, :pos_inf} -> true; {m1_v,m2_v} when is_integer(m1_v) and is_integer(m2_v) -> m1_v <= m2_v; _ -> false end min1_gte_min2 and max1_lte_max2 {{:literal, val}, {:integer_range, min, max}} when is_integer(val) -> (min == :neg_inf or val >= min) and (max == :pos_inf or val <= max) {{:mu, v1, b1_body}, {:mu, v2, b2_body}} -> cond do is_list_mu_form(b1_body, v1) and is_list_mu_form(b2_body, v2) -> e1 = extract_list_mu_element(b1_body, v1) e2 = extract_list_mu_element(b2_body, v2) do_is_subtype_structural?(e1, e2, new_visited) v1 == v2 -> # Canonical vars are the same, implies types were structurally identical before renaming, or one unfolds to other subst_map1 = %{v1 => spec1} # spec1 is the mu-type itself (μv1.b1_body) subst_map2 = %{v2 => spec2} # spec2 is the mu-type itself (μv2.b2_body) unfolded_b1 = substitute_vars_canonical(b1_body, subst_map1) unfolded_b2 = substitute_vars_canonical(b2_body, subst_map2) do_is_subtype_structural?(unfolded_b1, unfolded_b2, new_visited) true -> # Different canonical mu-variables, not list forms # This path is taken for Mu_B_final vs Mu_C_final if spec1/spec2 were Mu_B_final/Mu_C_final *before* normalization. # If they were normalized, they'd be identical if equivalent. # If is_subtype? is called with already-canonical forms Mu_B_final and Mu_C_final, # then v1 = :m_var1, v2 = :m_var2. So this `true` branch is taken. false end {{:mu, v_s1, body_s1}, :list} -> is_list_mu_form(body_s1, v_s1) {{:negation, n_body1}, {:negation, n_body2}} -> do_is_subtype_structural?(n_body2, n_body1, new_visited) _ -> false end end end end defp substitute_vars_canonical(spec, substitutions) do case spec do {:type_var, name} -> Map.get(substitutions, name, spec) {:mu, var_name, body} -> active_substitutions = Map.delete(substitutions, var_name) {:mu, var_name, substitute_vars_canonical(body, active_substitutions)} {:type_lambda, param_names, body} -> active_substitutions = Enum.reduce(param_names, substitutions, &Map.delete(&2, &1)) {:type_lambda, param_names, substitute_vars_canonical(body, active_substitutions)} {:negation, sub} -> {:negation, substitute_vars_canonical(sub, substitutions)} {:tuple, elements} -> {:tuple, Enum.map(elements, &substitute_vars_canonical(&1, substitutions))} {:cons, h, t} -> {:cons, substitute_vars_canonical(h, substitutions), substitute_vars_canonical(t, substitutions)} {:list_of, e} -> {:list_of, substitute_vars_canonical(e, substitutions)} {:union, members} -> {:union, Enum.map(members, &substitute_vars_canonical(&1, substitutions))} {:intersect, members} -> {:intersect, Enum.map(members, &substitute_vars_canonical(&1, substitutions))} {:type_apply, con, args} -> new_con = substitute_vars_canonical(con, substitutions) new_args = Enum.map(args, &substitute_vars_canonical(&1, substitutions)) {:type_apply, new_con, new_args} _atomic_or_simple_spec -> spec end end defp is_list_mu_form({:union, members}, rec_var_name) do sorted_members = Enum.sort(members) match?([{:literal, []}, {:cons, _elem, {:type_var, ^rec_var_name}}], sorted_members) or match?([{:cons, _elem, {:type_var, ^rec_var_name}}, {:literal, []}], sorted_members) end defp is_list_mu_form(_, _), do: false defp extract_list_mu_element({:union, members}, rec_var_name) do Enum.find_value(members, fn {:cons, elem_spec, {:type_var, ^rec_var_name}} -> elem_spec _ -> nil end) || :any end # Public API for get_supertypes def get_supertypes(spec), do: get_supertypes(spec, false) # Internal helper for get_supertypes defp get_supertypes(spec_input, already_normalized) do fully_normalized_spec = if already_normalized, do: spec_input, else: normalize(spec_input) supertypes = case fully_normalized_spec do {:literal, val} when is_atom(val) -> [:atom] {:literal, val} when is_integer(val) -> [:integer] {:literal, val} when is_list(val) -> [:list] {:literal, val} when is_tuple(val) -> [:tuple] {:mu, v, body} -> if is_list_mu_form(body, v), do: [:list], else: [] {:tuple, _} -> [:tuple] {:integer_range, _, _} -> [:integer] _ -> [] end MapSet.to_list(MapSet.new([fully_normalized_spec | supertypes])) end end defmodule Tdd.Store do @moduledoc """ Manages the state of the TDD system's node graph and operation cache. This module acts as the stateful backend for the TDD algorithms. It is responsible for creating unique, shared nodes (ensuring structural canonicity) and for memoizing the results of expensive operations. It is intentionally agnostic about the *meaning* of the variables within the nodes; it treats them as opaque, comparable terms. The logic for interpreting these variables resides in higher-level modules like `Tdd.Algo` and `Tdd.Consistency.Engine`. For simplicity, this implementation uses the Process dictionary for state. In a production, concurrent application, this would be replaced by a `GenServer` to ensure safe, serialized access to the shared TDD state. """ # --- State Keys --- @nodes_key :tdd_nodes @node_by_id_key :tdd_node_by_id @next_id_key :tdd_next_id @op_cache_key :tdd_op_cache # --- Terminal Node IDs --- @false_node_id 0 @true_node_id 1 # --- Public API --- @doc "Initializes the TDD store in the current process." def init do # The main lookup table: {variable, y, n, d} -> id Process.put(@nodes_key, %{}) # The reverse lookup table: id -> {variable, y, n, d} or :terminal Process.put(@node_by_id_key, %{ @false_node_id => :false_terminal, @true_node_id => :true_terminal }) # The next available integer ID for a new node. Process.put(@next_id_key, 2) # The cache for memoizing operation results: {op, args} -> id Process.put(@op_cache_key, %{}) :ok end @doc "Returns the ID for the TRUE terminal node (the 'any' type)." @spec true_node_id() :: non_neg_integer() def true_node_id, do: @true_node_id @doc "Returns the ID for the FALSE terminal node (the 'none' type)." @spec false_node_id() :: non_neg_integer() def false_node_id, do: @false_node_id @doc "Retrieves the details of a node by its ID." @spec get_node(non_neg_integer()) :: {:ok, {variable :: term(), yes_id :: non_neg_integer(), no_id :: non_neg_integer(), dc_id :: non_neg_integer()}} | {:ok, :true_terminal | :false_terminal} | {:error, :not_found} def get_node(id) do case Process.get(@node_by_id_key, %{}) do %{^id => details} -> {:ok, details} %{} -> {:error, :not_found} end end @doc """ Finds an existing node that matches the structure or creates a new one. This is the core function for ensuring structural sharing (part of the "Reduced" property of ROBDDs). It also implements a fundamental reduction rule: if all children of a node are identical, the node is redundant and is replaced by its child. """ @spec find_or_create_node( variable :: term(), yes_id :: non_neg_integer(), no_id :: non_neg_integer(), dc_id :: non_neg_integer() ) :: non_neg_integer() def find_or_create_node(variable, yes_id, no_id, dc_id) do # Basic reduction rule: a node whose test is irrelevant is redundant. if yes_id == no_id && yes_id == dc_id do yes_id else node_tuple = {variable, yes_id, no_id, dc_id} nodes = Process.get(@nodes_key, %{}) case Map.get(nodes, node_tuple) do # Node already exists, return its ID for structural sharing. id when is_integer(id) -> id # Node does not exist, create it. nil -> next_id = Process.get(@next_id_key) node_by_id = Process.get(@node_by_id_key) # Update all state tables Process.put(@nodes_key, Map.put(nodes, node_tuple, next_id)) Process.put(@node_by_id_key, Map.put(node_by_id, next_id, node_tuple)) Process.put(@next_id_key, next_id + 1) next_id end end end @doc "Retrieves a result from the operation cache." @spec get_op_cache(term()) :: {:ok, term()} | :not_found def get_op_cache(cache_key) do case Process.get(@op_cache_key, %{}) do %{^cache_key => result} -> {:ok, result} %{} -> :not_found end end @doc "Puts a result into the operation cache." @spec put_op_cache(term(), term()) :: :ok def put_op_cache(cache_key, result) do # Using `get_and_update_in` would be safer but this is fine for this context. cache = Process.get(@op_cache_key, %{}) Process.put(@op_cache_key, Map.put(cache, cache_key, result)) :ok end @doc """ Creates a unique, temporary placeholder node for a recursive spec. Returns the ID of this placeholder. """ @spec create_placeholder(TypeSpec.t()) :: non_neg_integer() def create_placeholder(spec) do # The variable is a unique tuple that won't conflict with real predicates. # The children are meaningless (-1) as they will be replaced. find_or_create_node({:placeholder, spec}, 1, 0, 0) end @doc """ Updates a node's details directly. This is a special-purpose, mutable-style operation used exclusively by the compiler to "tie the knot" for recursive types. It updates both the forward and reverse lookup tables. """ @spec update_node_in_place( non_neg_integer(), new_details :: {:ok, {term(), non_neg_integer(), non_neg_integer(), non_neg_integer()} | :true_terminal | :false_terminal} ) :: :ok def update_node_in_place(id, {:ok, new_details}) do # Get current state nodes = Process.get(@nodes_key) node_by_id = Process.get(@node_by_id_key) # 1. Find and remove the old reverse mapping from the `nodes` table. # The node at `id` is a placeholder, so its details are what we created above. old_details = Map.get(node_by_id, id) nodes = Map.delete(nodes, old_details) # 2. Add the new reverse mapping to the `nodes` table. # But only if the new details correspond to a non-terminal node. nodes = case new_details do {_v, _y, _n, _d} -> Map.put(nodes, new_details, id) _ -> nodes end # 3. Update the main `node_by_id` table. node_by_id = Map.put(node_by_id, id, new_details) # 4. Save the updated tables. Process.put(@nodes_key, nodes) Process.put(@node_by_id_key, node_by_id) :ok end end defmodule Tdd.Variable do # use Tdd.Debug @moduledoc """ Defines the canonical structure for all Tdd predicate variables. The structure `{category, predicate, value, padding}` is used to enforce a stable global ordering. All variables are 4-element tuples to ensure that Elixir's tuple-size-first comparison rule does not interfere with the intended predicate ordering within a category. """ alias Tdd.TypeSpec # --- Category 0: Primary Type Discriminators --- # Padding with `nil` to make them 4-element tuples. @spec v_is_atom() :: term() def v_is_atom, do: {0, :is_atom, nil, nil} @spec v_is_integer() :: term() def v_is_integer, do: {0, :is_integer, nil, nil} @spec v_is_list() :: term() def v_is_list, do: {0, :is_list, nil, nil} @spec v_is_tuple() :: term() def v_is_tuple, do: {0, :is_tuple, nil, nil} # --- Category 1: Atom Properties --- @spec v_atom_eq(atom()) :: term() def v_atom_eq(atom_val) when is_atom(atom_val), do: {1, :value, atom_val, nil} # --- Category 2: Integer Properties --- @spec v_int_lt(integer()) :: term() def v_int_lt(n) when is_integer(n), do: {2, :alt, n, nil} @spec v_int_eq(integer()) :: term() def v_int_eq(n) when is_integer(n), do: {2, :beq, n, nil} @spec v_int_gt(integer()) :: term() def v_int_gt(n) when is_integer(n), do: {2, :cgt, n, nil} # --- Category 4: Tuple Properties --- # The most complex var here is `:b_element` with index and nested var. # So all vars in this category need to be at least 4-element. @spec v_tuple_size_eq(non_neg_integer()) :: term() def v_tuple_size_eq(size) when is_integer(size) and size >= 0, do: {4, :a_size, size, nil} @spec v_tuple_elem_pred(non_neg_integer(), term()) :: term() def v_tuple_elem_pred(index, nested_pred_var) when is_integer(index) and index >= 0 do {4, :b_element, index, nested_pred_var} end # --- Category 5: List Properties --- @doc "Predicate: The list is the empty list `[]`." @spec v_list_is_empty() :: term() def v_list_is_empty, do: {5, :b_is_empty, nil, nil} @doc "Predicate: Applies a nested predicate to the head of a non-empty list." @spec v_list_head_pred(term()) :: term() def v_list_head_pred(nested_pred_var), do: {5, :c_head, nested_pred_var, nil} @doc "Predicate: Applies a nested predicate to the tail of a non-empty list." @spec v_list_tail_pred(term()) :: term() def v_list_tail_pred(nested_pred_var), do: {5, :d_tail, nested_pred_var, nil} end defmodule Tdd.Predicate.Info do @moduledoc "A knowledge base for the properties of TDD predicate variables." alias Tdd.Variable @doc "Returns a map of traits for a given predicate variable." @spec get_traits(term()) :: map() | nil def get_traits({0, :is_atom, _, _}) do %{ type: :primary, category: :atom, implies: [ {Variable.v_is_integer(), false}, {Variable.v_is_list(), false}, {Variable.v_is_tuple(), false} ] } end def get_traits({0, :is_integer, _, _}) do %{ type: :primary, category: :integer, implies: [ {Variable.v_is_atom(), false}, {Variable.v_is_list(), false}, {Variable.v_is_tuple(), false} ] } end def get_traits({0, :is_list, _, _}) do %{ type: :primary, category: :list, implies: [ {Variable.v_is_atom(), false}, {Variable.v_is_integer(), false}, {Variable.v_is_tuple(), false} ] } end def get_traits({0, :is_tuple, _, _}) do %{ type: :primary, category: :tuple, implies: [ {Variable.v_is_atom(), false}, {Variable.v_is_integer(), false}, {Variable.v_is_list(), false} ] } end # --- The rest of the module is unchanged --- def get_traits({1, :value, _val, _}) do %{type: :atom_value, category: :atom, implies: [{Variable.v_is_atom(), true}]} end def get_traits({2, :alt, _, _}), do: %{type: :integer_prop, category: :integer, implies: [{Variable.v_is_integer(), true}]} def get_traits({2, :beq, _, _}), do: %{type: :integer_prop, category: :integer, implies: [{Variable.v_is_integer(), true}]} def get_traits({2, :cgt, _, _}), do: %{type: :integer_prop, category: :integer, implies: [{Variable.v_is_integer(), true}]} def get_traits({4, :a_size, _, _}) do %{type: :tuple_prop, category: :tuple, implies: [{Variable.v_is_tuple(), true}]} end def get_traits({4, :b_element, index, _nested_var}) do %{ type: :tuple_recursive, category: :tuple, sub_key: {:elem, index}, implies: [{Variable.v_is_tuple(), true}] } end # def get_traits({5, :a_all_elements, element_spec, _}) do # %{ # type: :list_recursive_ambient, # category: :list, # ambient_constraint_spec: element_spec, # implies: [{Variable.v_is_list(), true}] # } # end def get_traits({5, :b_is_empty, _, _}) do %{type: :list_prop, category: :list, implies: [{Variable.v_is_list(), true}]} end def get_traits({5, :c_head, _nested_var, _}) do %{ type: :list_recursive, category: :list, sub_key: :head, implies: [{Variable.v_is_list(), true}, {Variable.v_list_is_empty(), false}] } end def get_traits({5, :d_tail, _nested_var, _}) do %{ type: :list_recursive, category: :list, sub_key: :tail, implies: [{Variable.v_is_list(), true}, {Variable.v_list_is_empty(), false}] } end def get_traits(_), do: nil end # in a new file, e.g., lib/tdd/consistency/engine.ex defmodule Tdd.Consistency.Engine do # use Tdd.Debug @moduledoc """ A rule-based engine for checking the semantic consistency of a set of assumptions. This engine is the "oracle" for the `Tdd.Algo.simplify/2` function. It takes a set of assumptions about predicate variables (e.g., `{is_atom, true}`, `{value == :foo, true}`) and determines if that set is logically consistent. The check is performed recursively. At each level, it: 1. **Expands** assumptions with their local implications (e.g. `value == :foo` implies `is_atom`). 2. **Checks for flat contradictions** at the current level (e.g., `is_atom` and `is_integer`). 3. **Groups** assumptions by sub-problem (e.g., all `head(...)` predicates). 4. **Recursively calls** the checker on each sub-problem with unwrapped predicates. """ alias Tdd.Predicate.Info alias Tdd.Variable @doc """ Checks if a map of assumptions is logically consistent. Returns `:consistent` or `:contradiction`. """ @spec check(map()) :: :consistent | :contradiction def check(assumptions) do # The main entry point now calls the recursive helper. # The logic from the old `check/1` is now inside `do_check/1`. do_check(assumptions) end @doc """ Expands a map of assumptions with all their logical implications. Returns `{:ok, expanded_map}` or `{:error, :contradiction}`. """ @spec expand(map()) :: {:ok, map()} | {:error, :contradiction} def expand(assumptions) do # Just expose the internal helper. expand_with_implications(assumptions) end # --- The Core Recursive Checker --- defp do_check(assumptions) do # 1. Expand assumptions with immediate, local implications. with {:ok, expanded} <- expand_with_implications(assumptions), # 2. Check for contradictions among the flat predicates at this level. :ok <- check_flat_consistency(expanded) do # 3. Group the expanded assumptions into sub-problems based on their scope. sub_problems = expanded |> Enum.group_by(fn {var, _val} -> (Info.get_traits(var) || %{})[:sub_key] end) # Drop top-level keys, we only want recursive sub-problems. |> Map.drop([nil]) # 4. If there are no sub-problems, and we passed the flat check, we're consistent. if map_size(sub_problems) == 0 do :consistent else # 5. Recursively check each sub-problem. Stop at the first contradiction. Enum.find_value(sub_problems, :consistent, fn {_sub_key, sub_assumptions_list} -> # Unwrap the variables for the recursive call # e.g., {{5, :c_head, NESTED_VAR, _}, val} -> {NESTED_VAR, val} remapped_assumptions = remap_sub_problem_vars(sub_assumptions_list) # If any sub-problem is a contradiction, the whole set is. case do_check(remapped_assumptions) do # Not a contradiction, continue checking others. :consistent -> nil # Contradiction found, halt and return. :contradiction -> :contradiction end end) end else # `expand_with_implications` or `check_flat_consistency` failed. {:error, _reason} -> :contradiction end end # --- Recursive Checking Helpers --- @doc "Converts a list of scoped assumptions into a map of base assumptions for a sub-problem." defp remap_sub_problem_vars(assumptions_list) do Map.new(assumptions_list, fn {var, val} -> {unwrap_var(var), val} end) end @doc "Extracts the inner predicate variable from a recursive variable." defp unwrap_var(var) do case var do {4, :b_element, _index, nested_pred_var} -> nested_pred_var {5, :c_head, nested_pred_var, _} -> nested_pred_var {5, :d_tail, nested_pred_var, _} -> nested_pred_var # This function is only called on vars that are known to be recursive, # so other cases are not expected. other -> other end end # --- Step 1: Implication Expansion (Unchanged) --- defp expand_with_implications(assumptions) do expand_loop(assumptions, assumptions) end defp expand_loop(new_assumptions, all_assumptions) do implications = Enum.flat_map(new_assumptions, fn {var, true} -> Map.get(Info.get_traits(var) || %{}, :implies, []) _ -> [] end) case Enum.reduce(implications, {:ok, %{}}, fn {implied_var, implied_val}, acc -> reduce_implication({implied_var, implied_val}, all_assumptions, acc) end) do {:error, :contradiction} = err -> err {:ok, newly_added} when map_size(newly_added) == 0 -> {:ok, all_assumptions} {:ok, newly_added} -> expand_loop(newly_added, Map.merge(all_assumptions, newly_added)) end end defp reduce_implication({var, val}, all_assumptions, {:ok, new_acc}) do case Map.get(all_assumptions, var) do nil -> {:ok, Map.put(new_acc, var, val)} ^val -> {:ok, new_acc} _other_val -> {:error, :contradiction} end end defp reduce_implication(_implication, _all_assumptions, error_acc), do: error_acc # --- Step 2: Flat Consistency Checks (Unchanged) --- defp check_flat_consistency(assumptions) do with :ok <- check_primary_type_exclusivity(assumptions), :ok <- check_atom_consistency(assumptions), :ok <- check_list_consistency(assumptions), :ok <- check_integer_consistency(assumptions), :ok <- check_tuple_consistency(assumptions) do :ok else :error -> {:error, :consistency_error} end end defp check_primary_type_exclusivity(assumptions) do primary_types = [ Variable.v_is_atom(), Variable.v_is_integer(), Variable.v_is_list(), Variable.v_is_tuple() ] true_primary_types = Enum.count(primary_types, &(Map.get(assumptions, &1) == true)) if true_primary_types > 1, do: :error, else: :ok end defp check_atom_consistency(assumptions) do true_atom_values = Enum.reduce(assumptions, MapSet.new(), fn {{1, :value, atom_val, _}, true}, acc -> MapSet.put(acc, atom_val) _, acc -> acc end) if MapSet.size(true_atom_values) > 1, do: :error, else: :ok end defp check_tuple_consistency(assumptions) do true_tuple_sizes = Enum.reduce(assumptions, MapSet.new(), fn {{4, :a_size, size, _}, true}, acc -> MapSet.put(acc, size) _, acc -> acc end) if MapSet.size(true_tuple_sizes) > 1, do: :error, else: :ok end defp check_list_consistency(assumptions) do is_empty = Map.get(assumptions, Variable.v_list_is_empty()) == true has_head_prop = Enum.any?(assumptions, &match?({{5, :c_head, _, _}, true}, &1)) has_tail_prop = Enum.any?(assumptions, &match?({{5, :d_tail, _, _}, true}, &1)) if is_empty and (has_head_prop or has_tail_prop), do: :error, else: :ok end defp check_integer_consistency(assumptions) do initial_range = {:neg_inf, :pos_inf} result = Enum.reduce_while(assumptions, initial_range, fn assumption, {min, max} -> case assumption do {{2, :alt, n, _}, true} -> narrow_range(min, safe_min(max, n - 1)) {{2, :alt, n, _}, false} -> narrow_range(safe_max(min, n), max) {{2, :beq, n, _}, true} -> narrow_range(safe_max(min, n), safe_min(max, n)) {{2, :beq, n, _}, false} when min == n and max == n -> {:halt, :invalid} {{2, :cgt, n, _}, true} -> narrow_range(safe_max(min, n + 1), max) {{2, :cgt, n, _}, false} -> narrow_range(min, safe_min(max, n)) _ -> {:cont, {min, max}} end end) case result, do: ( :invalid -> :error _ -> :ok ) end defp narrow_range(min, max) do is_invalid = case {min, max} do {:neg_inf, _} -> false {_, :pos_inf} -> false {m, n} when is_integer(m) and is_integer(n) -> m > n _ -> false end if is_invalid, do: {:halt, :invalid}, else: {:cont, {min, max}} end defp safe_max(:neg_inf, x), do: x defp safe_max(x, :neg_inf), do: x defp safe_max(:pos_inf, _), do: :pos_inf defp safe_max(_, :pos_inf), do: :pos_inf defp safe_max(a, b), do: :erlang.max(a, b) defp safe_min(:pos_inf, x), do: x defp safe_min(x, :pos_inf), do: x defp safe_min(:neg_inf, _), do: :neg_inf defp safe_min(_, :neg_inf), do: :neg_inf defp safe_min(a, b), do: :erlang.min(a, b) end defmodule Tdd.Algo do @moduledoc "Implements the core, stateless algorithms for TDD manipulation." use Tdd.Debug alias Tdd.Store alias Tdd.Consistency.Engine # --- Binary Operation: Apply --- @spec apply(atom, (atom, atom -> atom), non_neg_integer, non_neg_integer) :: non_neg_integer def apply(op_name, op_lambda, u1_id, u2_id) do # Memoization wrapper cache_key = {:apply, op_name, Enum.sort([u1_id, u2_id])} case Store.get_op_cache(cache_key) do {:ok, result_id} -> result_id :not_found -> result_id = do_apply(op_name, op_lambda, u1_id, u2_id) Store.put_op_cache(cache_key, result_id) result_id end end defp do_apply(op_name, op_lambda, u1_id, u2_id) do with {:ok, u1_details} <- Store.get_node(u1_id), {:ok, u2_details} <- Store.get_node(u2_id) do cond do (u1_details == :true_terminal or u1_details == :false_terminal) and (u2_details == :true_terminal or u2_details == :false_terminal) -> if op_lambda.(u1_details, u2_details) == :true_terminal, do: Store.true_node_id(), else: Store.false_node_id() u1_details == :true_terminal or u1_details == :false_terminal -> {var2, y2, n2, d2} = u2_details Store.find_or_create_node( var2, apply(op_name, op_lambda, u1_id, y2), apply(op_name, op_lambda, u1_id, n2), apply(op_name, op_lambda, u1_id, d2) ) u2_details == :true_terminal or u2_details == :false_terminal -> {var1, y1, n1, d1} = u1_details Store.find_or_create_node( var1, apply(op_name, op_lambda, y1, u2_id), apply(op_name, op_lambda, n1, u2_id), apply(op_name, op_lambda, d1, u2_id) ) true -> {var1, y1, n1, d1} = u1_details {var2, y2, n2, d2} = u2_details top_var = Enum.min([var1, var2]) res_y = apply( op_name, op_lambda, if(var1 == top_var, do: y1, else: u1_id), if(var2 == top_var, do: y2, else: u2_id) ) res_n = apply( op_name, op_lambda, if(var1 == top_var, do: n1, else: u1_id), if(var2 == top_var, do: n2, else: u2_id) ) res_d = apply( op_name, op_lambda, if(var1 == top_var, do: d1, else: u1_id), if(var2 == top_var, do: d2, else: u2_id) ) Store.find_or_create_node(top_var, res_y, res_n, res_d) end end end # --- Unary Operation: Negation --- @spec negate(non_neg_integer) :: non_neg_integer def negate(tdd_id) do cache_key = {:negate, tdd_id} case Store.get_op_cache(cache_key) do {:ok, result_id} -> result_id :not_found -> result_id = case Store.get_node(tdd_id) do {:ok, :true_terminal} -> Store.false_node_id() {:ok, :false_terminal} -> Store.true_node_id() {:ok, {var, y, n, d}} -> Store.find_or_create_node(var, negate(y), negate(n), negate(d)) end Store.put_op_cache(cache_key, result_id) result_id {:error, :not_found} -> result_id = case Store.get_node(tdd_id) do {:ok, :true_terminal} -> Store.false_node_id() {:ok, :false_terminal} -> Store.true_node_id() {:ok, {var, y, n, d}} -> Store.find_or_create_node(var, negate(y), negate(n), negate(d)) end Store.put_op_cache(cache_key, result_id) result_id end end # --- Unary Operation: Semantic Simplification --- @doc """ Simplifies a TDD under a set of external assumptions. This is the main public entry point. It sets up the context for the coinductive cycle detection. """ @spec simplify(non_neg_integer(), map()) :: non_neg_integer def simplify(tdd_id, assumptions \\ %{}) do # The main cache uses a sorted list of assumptions for a canonical key. sorted_assumptions = Enum.sort(assumptions) cache_key = {:simplify, tdd_id, sorted_assumptions} case Store.get_op_cache(cache_key) do {:ok, result_id} -> result_id :not_found -> # Start the recursive simplification with an empty context. # The context is a MapSet to track visited (id, assumptions) pairs on the call stack. result_id = do_simplify(tdd_id, sorted_assumptions, MapSet.new()) Store.put_op_cache(cache_key, result_id) result_id end end # The private helper now takes a `context` to detect infinite recursion. # The private helper now takes a `context` to detect infinite recursion. defp do_simplify(tdd_id, sorted_assumptions, context) do current_state = {tdd_id, sorted_assumptions} # Coinductive base case: if we have seen this exact state before in this # call stack, we are in a loop. if MapSet.member?(context, current_state) do Store.true_node_id() else new_context = MapSet.put(context, current_state) assumptions = Map.new(sorted_assumptions) # If the assumptions themselves are contradictory, the result is `none`. if Engine.check(assumptions) == :contradiction do Store.false_node_id() else case Store.get_node(tdd_id) do {:ok, :true_terminal} -> Store.true_node_id() {:ok, :false_terminal} -> Store.false_node_id() {:ok, {var, y, n, d}} -> # Check if the variable's value is already explicitly known. case Map.get(assumptions, var) do true -> do_simplify(y, sorted_assumptions, new_context) false -> do_simplify(n, sorted_assumptions, new_context) :dc -> do_simplify(d, sorted_assumptions, new_context) # The variable's value is not explicitly known. # Check if the context of assumptions *implies* its value. nil -> assumptions_imply_true = Engine.check(Map.put(assumptions, var, false)) == :contradiction assumptions_imply_false = Engine.check(Map.put(assumptions, var, true)) == :contradiction cond do # This case should be caught by the top-level Engine.check, but is here for safety. assumptions_imply_true and assumptions_imply_false -> Store.false_node_id() # --- THIS IS THE FIX --- # If the context implies `var` must be true, we follow the 'yes' path. # We do NOT add `{var, true}` to the assumptions for the recursive call, # as that would cause the assumption set to grow infinitely and break # the coinductive check. The original `assumptions` set already # contains all the necessary information for the engine to work. assumptions_imply_true -> do_simplify(y, sorted_assumptions, new_context) # Likewise, if the context implies `var` must be false, follow the 'no' path # with the original, unmodified assumptions. assumptions_imply_false -> do_simplify(n, sorted_assumptions, new_context) # The variable is truly independent. We must simplify all branches, # adding the new assumption for each respective path, and reconstruct the node. true -> s_y = do_simplify(y, Enum.sort(Map.put(assumptions, var, true)), new_context) s_n = do_simplify(n, Enum.sort(Map.put(assumptions, var, false)), new_context) s_d = do_simplify(d, Enum.sort(Map.put(assumptions, var, :dc)), new_context) Store.find_or_create_node(var, s_y, s_n, s_d) end end end end end end @doc """ Recursively traverses a TDD graph from `root_id`, creating a new graph where all references to `from_id` are replaced with `to_id`. This is a pure function used to "tie the knot" in recursive type compilation. """ @spec substitute( root_id :: non_neg_integer(), from_id :: non_neg_integer(), to_id :: non_neg_integer() ) :: non_neg_integer() def substitute(root_id, from_id, to_id) do # Handle the trivial case where the root is the node to be replaced. if root_id == from_id, do: to_id, else: do_substitute(root_id, from_id, to_id) end # The private helper uses memoization to avoid re-computing identical sub-graphs. defp do_substitute(root_id, from_id, to_id) do cache_key = {:substitute, root_id, from_id, to_id} case Store.get_op_cache(cache_key) do {:ok, result_id} -> result_id :not_found -> result_id = case Store.get_node(root_id) do # Terminal nodes are unaffected unless they are the target of substitution. {:ok, :true_terminal} -> Store.true_node_id() {:ok, :false_terminal} -> Store.false_node_id() # For internal nodes, recursively substitute in all children. {:ok, {var, y, n, d}} -> new_y = substitute(y, from_id, to_id) new_n = substitute(n, from_id, to_id) new_d = substitute(d, from_id, to_id) Store.find_or_create_node(var, new_y, new_n, new_d) # This case should not be hit if the graph is well-formed. {:error, reason} -> raise "substitute encountered an error getting node #{root_id}: #{reason}" end Store.put_op_cache(cache_key, result_id) result_id end end # defp do_simplify(tdd_id, assumptions) do # IO.inspect([tdd_id, assumptions], label: "do_simplify(tdd_id, assumptions)") # # First, check if the current assumption set is already a contradiction. # # If so, any TDD under these assumptions is empty (:none). # if Engine.check(assumptions) == :contradiction do # Store.false_node_id() # else # case Store.get_node(tdd_id) do # {:ok, :true_terminal} -> # Store.true_node_id() # # {:ok, :false_terminal} -> # Store.false_node_id() # # {:ok, {var, y, n, d}} -> # # Check if the variable's value is already known or implied by the assumptions. # case Map.get(assumptions, var) do # true -> # simplify(y, assumptions) # # false -> # simplify(n, assumptions) # # :dc -> # simplify(d, assumptions) # # nil -> # # The variable's value is not explicitly known. # # We must ask the Consistency.Engine if the assumptions *imply* a value. # # # Does the context imply `var` must be true? # # This is true if adding `var == false` creates a contradiction. # assumptions_imply_true = # Engine.check(Map.put(assumptions, var, false)) == :contradiction # # # Does the context imply `var` must be false? # # This is true if adding `var == true` creates a contradiction. # assumptions_imply_false = # Engine.check(Map.put(assumptions, var, true)) == :contradiction # # cond do # # This can happen if the base assumptions are contradictory, # # but it's handled at the top of the function. # assumptions_imply_true and assumptions_imply_false -> # Store.false_node_id() # # # The context forces `var` to be true, so we only need to follow the 'yes' path. # assumptions_imply_true -> # simplify(y, assumptions) # # # The context forces `var` to be false, so we only need to follow the 'no' path. # assumptions_imply_false -> # simplify(n, assumptions) # # # The variable is truly independent of the current assumptions. # # We must simplify all branches and reconstruct the node. # true -> # s_y = simplify(y, Map.put(assumptions, var, true)) # s_n = simplify(n, Map.put(assumptions, var, false)) # s_d = simplify(d, Map.put(assumptions, var, :dc)) # Store.find_or_create_node(var, s_y, s_n, s_d) # end # end # end # end # end end defmodule Tdd.TypeReconstructor do @moduledoc """ Reconstructs a high-level `TypeSpec` from a low-level assumption map. This module performs the inverse operation of the TDD compiler. It takes a set of predicate assumptions (e.g., from a path in a TDD) and synthesizes the most specific `TypeSpec` that satisfies all of those assumptions. """ use Tdd.Debug alias Tdd.TypeSpec alias Tdd.Predicate.Info alias Tdd.Variable @doc """ Takes a map of `{variable, boolean}` assumptions and returns a `TypeSpec`. """ @spec spec_from_assumptions(map()) :: TypeSpec.t() def spec_from_assumptions(assumptions) do # 1. Partition assumptions into groups for the top-level entity and its sub-components. partitions = Enum.group_by(assumptions, fn {var, _val} -> case Info.get_traits(var) do # :head or :tail %{type: :list_recursive, sub_key: key} -> key # {:elem, index} %{type: :tuple_recursive, sub_key: key} -> key # All other predicates apply to the top-level entity _ -> :top_level end end) # 2. Reconstruct the spec for the top-level entity from its flat assumptions. top_level_assumptions = Map.get(partitions, :top_level, []) |> Map.new() top_level_spec = spec_from_flat_assumptions(top_level_assumptions) # 3. Recursively reconstruct specs for all sub-problems (head, tail, elements). sub_problem_specs = partitions |> Map.drop([:top_level]) |> Enum.map(fn {sub_key, sub_assumptions_list} -> # Re-map the nested variables back to their base form for the recursive call. # e.g., {{5, :c_head, NESTED_VAR, _}, val} -> {NESTED_VAR, val} remapped_assumptions = sub_assumptions_list |> Map.new(fn {var, val} -> # This pattern matching is a bit simplified for clarity {_cat, _pred, nested_var_or_idx, maybe_nested_var} = var nested_var = if is_nil(maybe_nested_var), do: nested_var_or_idx, else: maybe_nested_var {nested_var, val} end) # Recursively build the spec for the sub-problem sub_spec = spec_from_assumptions(remapped_assumptions) # Wrap it in a constructor that describes its relationship to the parent case sub_key do # Partial spec: just describes the head :head -> {:cons, sub_spec, :any} # Partial spec: just describes the tail :tail -> {:cons, :any, sub_spec} {:elem, index} -> # Create a sparse tuple spec, e.g., {any, any, , any} # This is complex, a simpler approach is needed for now. # For now, we'll just return a tuple spec that isn't fully specific. # A full implementation would need to know the tuple's size. # This is an oversimplification but works for demo {:tuple, [sub_spec]} end end) # 4. The final spec is the intersection of the top-level spec and all sub-problem specs. final_spec_list = [top_level_spec | sub_problem_specs] TypeSpec.normalize({:intersect, final_spec_list}) end @doc "Handles only the 'flat' (non-recursive) assumptions for a single entity." defp spec_from_flat_assumptions(assumptions) do specs = Enum.map(assumptions, fn {var, bool_val} -> # Convert each assumption into a `TypeSpec`. # A `true` assumption means the type is `X`. # A `false` assumption means the type is `¬X`. spec = case var do {0, :is_atom, _, _} -> :atom {0, :is_integer, _, _} -> :integer {0, :is_list, _, _} -> :list {0, :is_tuple, _, _} -> :tuple {1, :value, val, _} -> {:literal, val} # For integer properties, we create a range spec. This part could be more detailed. # x < n {2, :alt, n, _} -> {:integer_range, :neg_inf, n - 1} {2, :beq, n, _} -> {:literal, n} # x > n {2, :cgt, n, _} -> {:integer_range, n + 1, :pos_inf} # Simplified for now {4, :a_size, _, _} -> :tuple {5, :b_is_empty, _, _} -> {:literal, []} # --- THIS IS THE FIX --- # Correctly reconstruct a list_of spec from the ambient predicate. # {5, :a_all_elements, element_spec, _} -> # {:list_of, element_spec} # Ignore recursive and ambient vars at this flat level _ -> :any end if bool_val, do: spec, else: {:negation, spec} end) # The result is the intersection of all the individual specs. TypeSpec.normalize({:intersect, specs}) end end defmodule Tdd.Compiler do # use Tdd.Debug # Keep if you use it @moduledoc "Compiles a `TypeSpec` into a canonical TDD ID." alias Tdd.TypeSpec alias Tdd.Variable alias Tdd.Store alias Tdd.Algo @doc """ The main public entry point. Takes a spec and returns its TDD ID. """ @spec spec_to_id(TypeSpec.t()) :: non_neg_integer() def spec_to_id(spec) do normalized_spec = TypeSpec.normalize(spec) # Context maps canonical var names from :mu (e.g. :m_var0) to placeholder TDD IDs. compile_normalized_spec(normalized_spec, %{}) end # Internal function that expects a NORMALIZED spec. # Handles caching, :mu binding, and :type_var resolution. defp compile_normalized_spec(normalized_spec, context) do # Cache key uses the normalized spec. Context is implicitly handled because # type variables within normalized_spec are already canonical. # If normalized_spec is a :type_var, its resolution depends on context, # so it shouldn't hit the main cache directly if context is non-empty. cache_key = {:spec_to_id, normalized_spec} case normalized_spec do {:type_var, var_name} -> case Map.get(context, var_name) do nil -> raise "Tdd.Compiler: Unbound type variable during TDD compilation: #{inspect(var_name)}. Full spec: #{inspect(normalized_spec)}. Context: #{inspect(context)}" placeholder_id when is_integer(placeholder_id) -> placeholder_id # This is a placeholder ID for a mu-bound variable end _other_form -> # Not a top-level type variable, proceed with caching/compilation case Store.get_op_cache(cache_key) do {:ok, id} -> id :not_found -> id_to_cache = case normalized_spec do {:mu, var_name, body_spec} -> # var_name is canonical, e.g., :m_var0 # Create a placeholder for this specific var_name's recursive usage. # The placeholder itself needs a unique ID in the TDD store. # Using {:recursive_var_placeholder, var_name} as the *variable* for the placeholder node. placeholder_node_variable_tag = {:mu_placeholder_for_var, var_name} placeholder_id = Store.create_placeholder(placeholder_node_variable_tag) new_context = Map.put(context, var_name, placeholder_id) # Recursively compile the body. body_spec is already normalized. compiled_body_id = compile_normalized_spec(body_spec, new_context) # Knot-tying: # The TDD graph rooted at `compiled_body_id` contains `placeholder_id` at recursive points. # We want a new graph where these `placeholder_id`s now point to `compiled_body_id` itself. # The result of this substitution is the TDD for the mu-type. # # If `update_node_in_place` is the chosen mechanism: # Store.update_node_in_place(placeholder_id, Store.get_node(compiled_body_id)) # final_id = placeholder_id # The placeholder ID becomes the ID of the mu-type # # If `Algo.substitute` is used (as in current `compile_recursive_spec`): # This creates a new graph where occurrences of `placeholder_id` in `compiled_body_id`'s graph # are replaced by `compiled_body_id` itself. # The root of the mu-type's TDD is this new graph. final_id = Algo.substitute(compiled_body_id, placeholder_id, compiled_body_id) Algo.simplify(final_id) # Atomic types, literals, and compound types (union, intersect, etc.) _ -> raw_id = do_structural_compile(normalized_spec, context) # Pass context for children's compilation Algo.simplify(raw_id) end Store.put_op_cache(cache_key, id_to_cache) id_to_cache end end end # This function compiles the actual structure of a normalized spec. # It assumes `structural_spec` is NOT a top-level :mu or :type_var (those are handled by compile_normalized_spec). # It calls `compile_normalized_spec` for its children to ensure they are properly cached and mu/type_var handled. defp do_structural_compile(structural_spec, context) do case structural_spec do :any -> Store.true_node_id() :none -> Store.false_node_id() :atom -> create_base_type_tdd(Variable.v_is_atom()) :integer -> create_base_type_tdd(Variable.v_is_integer()) :list -> create_base_type_tdd(Variable.v_is_list()) :tuple -> create_base_type_tdd(Variable.v_is_tuple()) {:literal, val} when is_atom(val) -> compile_value_equality(:atom, Variable.v_atom_eq(val), context) {:literal, val} when is_integer(val) -> compile_value_equality(:integer, Variable.v_int_eq(val), context) {:literal, []} -> # Empty list compile_value_equality(:list, Variable.v_list_is_empty(), context) # Add other literal types if necessary, e.g. literal tuples {:integer_range, min, max} -> compile_integer_range(min, max, context) {:union, specs} -> Enum.map(specs, &compile_normalized_spec(&1, context)) |> Enum.reduce(Store.false_node_id(), fn id, acc -> Algo.apply(:sum, &op_union_terminals/2, id, acc) end) {:intersect, specs} -> Enum.map(specs, &compile_normalized_spec(&1, context)) |> Enum.reduce(Store.true_node_id(), fn id, acc -> Algo.apply(:intersect, &op_intersect_terminals/2, id, acc) end) {:negation, sub_spec} -> Algo.negate(compile_normalized_spec(sub_spec, context)) {:cons, head_spec, tail_spec} -> id_head = compile_normalized_spec(head_spec, context) id_tail = compile_normalized_spec(tail_spec, context) compile_cons_from_ids(id_head, id_tail, context) # context passed for sub_problem {:tuple, elements_specs} -> compile_tuple_from_elements(elements_specs, context) # Renamed for clarity # These should not be encountered here if TypeSpec.normalize worked correctly for ground types. {:type_lambda, _, _} -> raise "Tdd.Compiler: Cannot compile :type_lambda directly. Spec should be ground. Spec: #{inspect(structural_spec)}" {:type_apply, _, _} -> raise "Tdd.Compiler: Cannot compile :type_apply directly. Spec should be ground and fully beta-reduced. Spec: #{inspect(structural_spec)}" # :mu and :type_var are handled by compile_normalized_spec directly. # :list_of is normalized to :mu by TypeSpec.normalize. # Catch-all for unexpected specs at this stage _ -> raise "Tdd.Compiler.do_structural_compile: Unhandled structural spec form: #{inspect(structural_spec)}" end end # --- Private Helper Functions (mostly from old do_spec_to_id) --- # Ensure they use `compile_normalized_spec` for sub-specs and pass `context`. defp create_base_type_tdd(var), do: Store.find_or_create_node(var, Store.true_node_id(), Store.false_node_id(), Store.false_node_id()) defp compile_value_equality(base_type_spec, value_var, context) do eq_node = create_base_type_tdd(value_var) # base_type_spec is an atom like :atom, :integer. It needs to be compiled. base_node_id = compile_normalized_spec(base_type_spec, context) Algo.apply(:intersect, &op_intersect_terminals/2, base_node_id, eq_node) end defp compile_integer_range(min, max, context) do base_id = compile_normalized_spec(:integer, context) # Ensure :integer is compiled via main path lt_min_tdd = if min != :neg_inf, do: create_base_type_tdd(Variable.v_int_lt(min)) gte_min_tdd = if lt_min_tdd, do: Algo.negate(lt_min_tdd), else: compile_normalized_spec(:any, context) # Use :any for unbounded id_with_min = Algo.apply(:intersect, &op_intersect_terminals/2, base_id, gte_min_tdd) if max == :pos_inf do id_with_min else # x <= max is equivalent to x < max + 1 lt_max_plus_1_tdd = create_base_type_tdd(Variable.v_int_lt(max + 1)) Algo.apply(:intersect, &op_intersect_terminals/2, id_with_min, lt_max_plus_1_tdd) end end defp compile_cons_from_ids(h_id, t_id, context) do # TDD for `is_list & !is_empty` id_list = compile_normalized_spec(:list, context) # Ensures :list is properly compiled id_is_empty = create_base_type_tdd(Variable.v_list_is_empty()) id_not_is_empty = Algo.negate(id_is_empty) non_empty_list_id = Algo.apply(:intersect, &op_intersect_terminals/2, id_list, id_not_is_empty) head_checker = sub_problem(&Variable.v_list_head_pred/1, h_id, context) tail_checker = sub_problem(&Variable.v_list_tail_pred/1, t_id, context) [non_empty_list_id, head_checker, tail_checker] |> Enum.reduce(compile_normalized_spec(:any, context), fn id, acc -> # Start intersection with :any Algo.apply(:intersect, &op_intersect_terminals/2, id, acc) end) end defp compile_tuple_from_elements(elements_specs, context) do size = length(elements_specs) base_id = compile_normalized_spec(:tuple, context) # Ensures :tuple is properly compiled size_tdd = create_base_type_tdd(Variable.v_tuple_size_eq(size)) initial_id = Algo.apply(:intersect, &op_intersect_terminals/2, base_id, size_tdd) elements_specs |> Enum.with_index() |> Enum.reduce(initial_id, fn {elem_spec, index}, acc_id -> # Compile the element's spec using the main path elem_id = compile_normalized_spec(elem_spec, context) elem_key_constructor = &Variable.v_tuple_elem_pred(index, &1) elem_checker = sub_problem(elem_key_constructor, elem_id, context) Algo.apply(:intersect, &op_intersect_terminals/2, acc_id, elem_checker) end) end # sub_problem and do_sub_problem remain largely the same, # but ensure `spec_to_id` called within `do_sub_problem` (for placeholder case) # is `compile_normalized_spec`. defp do_sub_problem(sub_key_constructor, tdd_id, context) do cond do tdd_id < 0 -> # Should not happen with valid placeholder IDs Store.false_node_id() true -> case Store.get_node(tdd_id) do {:ok, :true_terminal} -> Store.true_node_id() {:ok, :false_terminal} -> Store.false_node_id() {:ok, {{:mu_placeholder_for_var, var_name_in_placeholder}, _, _, _}} -> # This is a placeholder node encountered during sub_problem traversal. # This means `tdd_id` is a `placeholder_id` for some `var_name`. # We are creating a TDD for `sub_key_constructor(var_name = placeholder_id)`. # This path is tricky. The `sub_problem` is meant to PUSH constraints inwards. # Example: list_of(X) -> cons(X, list_of(X)). # When compiling `list_of(X)`, head is `X`. `sub_problem(v_list_head_pred, compile(X), ...)` # If `X` itself is `mu Y. ...`, then `compile(X)` becomes `P_Y`. # So `sub_problem(v_list_head_pred, P_Y, ...)` # Inside `do_sub_problem`, `tdd_id` is `P_Y`. Its node details are `mu_placeholder_for_var, Y`. # This indicates that the sub-problem applies to whatever `Y` resolves to. # This branch in do_sub_problem seems to handle if the *tdd_id itself* is a placeholder. # The original logic for `{{:placeholder, spec}, _, _, _}`: # dummy_var = sub_key_constructor.(:dummy) # case dummy_var do ... uses spec ... # This `spec` was the spec of the list_of/tuple that the placeholder represented. # Now, placeholder is for `var_name`. `spec` is not directly available here. # This part of `do_sub_problem` might need adjustment or may become less relevant # if placeholders are simpler. # For now, let's assume `tdd_id` passed to sub_problem is a fully compiled TDD (or terminal). # If `tdd_id` *is* a placeholder ID, `Store.get_node(tdd_id)` will return its placeholder structure. # The original `compile_recursive_spec`'s `substitute` call handles the cycles. # `sub_problem` should operate on the structure of `tdd_id` *after* it's potentially resolved. # The `substitute` call makes the graph cyclic. `sub_problem` might then traverse this cycle. # `Algo.simplify`'s coinductive handling should manage this. # This specific case `{{:mu_placeholder_for_var, ...}}` means tdd_id *is* a raw placeholder, # which shouldn't happen if `substitute` was called correctly to make it point to a real structure. # This suggests that `sub_problem` should perhaps not be called with raw placeholder_ids. # # Re-thinking: `sub_problem` constructs `Var(SubTDD)`. # `Var` is `v_list_head_pred(InnerVar)`. `SubTDD` is the TDD for the head type. # `sub_problem` is essentially `map(tdd_id, fn node_var -> sub_key_constructor.(node_var))`. # If `tdd_id` is `P_Y`, then we are making `sub_key_constructor(P_Y_var)`. # This seems correct. The placeholder variable in the store is `({:mu_placeholder_for_var, var_name}, 1,0,0)`. # So `var` below would be `{:mu_placeholder_for_var, var_name_in_placeholder}`. raise "Tdd.Compiler.do_sub_problem: Encountered raw placeholder node details. This path needs review. Details: #{inspect(Store.get_node(tdd_id))}" {:ok, {var, y, n, d}} -> # Normal node Store.find_or_create_node( sub_key_constructor.(var), sub_problem(sub_key_constructor, y, context), # Pass context sub_problem(sub_key_constructor, n, context), # Pass context sub_problem(sub_key_constructor, d, context) # Pass context ) {:error, reason} -> raise "Tdd.Compiler.do_sub_problem: Error getting node for ID #{tdd_id}: #{reason}" end end end # Memoization wrapper for sub_problem defp sub_problem(sub_key_constructor, tdd_id, context) do # Context is not part of cache key for sub_problem, as its effect is on how tdd_id was built. # The structure of tdd_id is what matters for sub_problem's transformation. cache_key = {:sub_problem,Atom.to_string(elem(sub_key_constructor.(:dummy_var_for_cache_key),1)), tdd_id} case Store.get_op_cache(cache_key) do {:ok, result_id} -> result_id :not_found -> result_id = do_sub_problem(sub_key_constructor, tdd_id, context) Store.put_op_cache(cache_key, result_id) result_id end end # --- Terminal Logic Helpers (unchanged) --- defp op_union_terminals(:true_terminal, _), do: :true_terminal defp op_union_terminals(_, :true_terminal), do: :true_terminal defp op_union_terminals(t, :false_terminal), do: t defp op_union_terminals(:false_terminal, t), do: t defp op_intersect_terminals(:false_terminal, _), do: :false_terminal defp op_intersect_terminals(_, :false_terminal), do: :false_terminal defp op_intersect_terminals(t, :true_terminal), do: t defp op_intersect_terminals(:true_terminal, t), do: t # --- Public Subtyping Check (from CompilerAlgoTests) --- @doc "Checks if spec1 is a subtype of spec2 using TDDs." @spec is_subtype(TypeSpec.t(), TypeSpec.t()) :: boolean def is_subtype(spec1, spec2) do id1 = spec_to_id(spec1) id2 = spec_to_id(spec2) # A <: B <=> A & ~B == none neg_id2 = Algo.negate(id2) intersect_id = Algo.apply(:intersect, &op_intersect_terminals/2, id1, neg_id2) # Simplify is crucial for coinductive reasoning with recursive types final_id = Algo.simplify(intersect_id) final_id == Store.false_node_id() end end #### # xxx #### defmodule TddStoreTests do def test(name, expected, result) do if expected == result do IO.puts("[PASS] #{name}") else IO.puts("[FAIL] #{name}") IO.puts(" Expected: #{inspect(expected)}") IO.puts(" Got: #{inspect(result)}") Process.put(:test_failures, [name | Process.get(:test_failures, [])]) end end def run() do IO.puts("\n--- Running Tdd.Store Tests ---") Process.put(:test_failures, []) # --- Test Setup --- Tdd.Store.init() # --- Test Cases --- IO.puts("\n--- Section: Initialization and Terminals ---") test("true_node_id returns 1", 1, Tdd.Store.true_node_id()) test("false_node_id returns 0", 0, Tdd.Store.false_node_id()) test("get_node for ID 1 returns true_terminal", {:ok, :true_terminal}, Tdd.Store.get_node(1)) test( "get_node for ID 0 returns false_terminal", {:ok, :false_terminal}, Tdd.Store.get_node(0) ) test( "get_node for unknown ID returns not_found", {:error, :not_found}, Tdd.Store.get_node(99) ) IO.puts("\n--- Section: Node Creation and Structural Sharing ---") # Define some opaque variables var_a = {:is_atom} var_b = {:is_integer} true_id = Tdd.Store.true_node_id() false_id = Tdd.Store.false_node_id() # Create a new node. It should get ID 2. id1 = Tdd.Store.find_or_create_node(var_a, true_id, false_id, false_id) test("First created node gets ID 2", 2, id1) # Verify its content test( "get_node for ID 2 returns the correct tuple", {:ok, {var_a, true_id, false_id, false_id}}, Tdd.Store.get_node(id1) ) # Create another, different node. It should get ID 3. id2 = Tdd.Store.find_or_create_node(var_b, id1, false_id, false_id) test("Second created node gets ID 3", 3, id2) # Attempt to create the first node again. id1_again = Tdd.Store.find_or_create_node(var_a, true_id, false_id, false_id) test( "Attempting to create an existing node returns the same ID (Structural Sharing)", id1, id1_again ) # Check that next_id was not incremented by the shared call id3 = Tdd.Store.find_or_create_node(var_b, true_id, false_id, false_id) test("Next new node gets the correct ID (4)", 4, id3) IO.puts("\n--- Section: Basic Reduction Rule ---") # Create a node where all children are the same. id_redundant = Tdd.Store.find_or_create_node(var_a, id3, id3, id3) test( "A node with identical children reduces to the child's ID", id3, id_redundant ) IO.puts("\n--- Section: Caching ---") cache_key = {:my_op, 1, 2} test("Cache is initially empty for a key", :not_found, Tdd.Store.get_op_cache(cache_key)) Tdd.Store.put_op_cache(cache_key, :my_result) test( "Cache returns the stored value after put", {:ok, :my_result}, Tdd.Store.get_op_cache(cache_key) ) Tdd.Store.put_op_cache(cache_key, :new_result) test("Cache can be updated", {:ok, :new_result}, Tdd.Store.get_op_cache(cache_key)) # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Tdd.Store tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures.") end end end defmodule TypeSpecTests do alias Tdd.TypeSpec # Simple test helper function defp test(name, expected, tested) do current_failures = Process.get(:test_failures, []) result = TypeSpec.normalize(tested) # Use a custom comparison to handle potentially unsorted lists in expected values # The normalize function *should* sort, but this makes tests more robust. is_equal = case {expected, result} do {{:union, list1}, {:union, list2}} -> Enum.sort(list1) == Enum.sort(list2) {{:intersect, list1}, {:intersect, list2}} -> Enum.sort(list1) == Enum.sort(list2) _ -> expected == result end if is_equal do IO.puts("[PASS] #{name}") else IO.puts("[FAIL] #{name}") IO.puts(" tested: #{inspect(tested)}") IO.puts(" Expected: #{inspect(expected)}") IO.puts(" Got: #{inspect(result)}") Process.put(:test_failures, [name | current_failures]) end end def run() do IO.puts("\n--- Running Tdd.TypeSpec.normalize/1 Tests ---") Process.put(:test_failures, []) # --- Test Section: Base & Simple Types --- IO.puts("\n--- Section: Base & Simple Types ---") test("Normalizing :any is idempotent", :any, :any) test("Normalizing :none is idempotent", :none, :none) test("Normalizing :atom is idempotent", :atom, :atom) test("Normalizing a literal is idempotent", {:literal, :foo}, {:literal, :foo}) # --- Test Section: Double Negation --- IO.puts("\n--- Section: Double Negation ---") test("¬(¬atom) simplifies to atom", :atom, {:negation, {:negation, :atom}}) test("A single negation is preserved", {:negation, :integer}, {:negation, :integer}) test( "¬(¬(¬atom)) simplifies to ¬atom", {:negation, :atom}, {:negation, {:negation, {:negation, :atom}}} ) # --- Test Section: Union Normalization --- IO.puts("\n--- Section: Union Normalization ---") test( "Flattens nested unions", {:union, [:atom, :integer, :list]}, {:union, [:integer, {:union, [:list, :atom]}]} ) test( "Sorts members of a union", {:union, [:atom, :integer, :list]}, {:union, [:list, :integer, :atom]} ) test( "Removes duplicates in a union", {:union, [:atom, :integer]}, {:union, [:integer, :atom, :integer]} ) test("Simplifies a union with :none (A | none -> A)", :atom, {:union, [:atom, :none]}) test("Simplifies a union with :any (A | any -> any)", :any, {:union, [:atom, :any]}) test("An empty union simplifies to :none", :none, {:union, []}) test("A union containing only :none simplifies to :none", :none, {:union, [:none, :none]}) test("A union of a single element simplifies to the element itself", :atom, {:union, [:atom]}) # --- Test Section: Intersection Normalization --- IO.puts("\n--- Section: Intersection Normalization ---") test( "Flattens nested intersections", {:intersect, [:atom, :integer, :list]}, {:intersect, [:integer, {:intersect, [:list, :atom]}]} ) test( "Sorts members of an intersection", {:intersect, [:atom, :integer, :list]}, {:intersect, [:list, :integer, :atom]} ) test( "Removes duplicates in an intersection", {:intersect, [:atom, :integer]}, {:intersect, [:integer, :atom, :integer]} ) test( "Simplifies an intersection with :any (A & any -> A)", :atom, {:intersect, [:atom, :any]} ) test( "Simplifies an intersection with :none (A & none -> none)", :none, {:intersect, [:atom, :none]} ) test("An empty intersection simplifies to :any", :any, {:intersect, []}) test( "An intersection of a single element simplifies to the element itself", :atom, {:intersect, [:atom]} ) # --- Test Section: Recursive Normalization --- IO.puts("\n--- Section: Recursive Normalization ---") test( "Recursively normalizes elements in a tuple", {:tuple, [:atom, {:union, [{:literal, :a}, {:literal, :b}]}]}, {:tuple, [{:union, [:atom]}, {:union, [{:literal, :a}, {:literal, :b}]}]} ) test( "Recursively normalizes head and tail in a cons", {:cons, :any, {:negation, :integer}}, {:cons, {:union, [:atom, :any]}, {:negation, {:union, [:integer]}}} ) test( "Recursively normalizes element in list_of", {:list_of, :list}, {:list_of, {:intersect, [:any, :list]}} ) test( "Recursively normalizes sub-spec in negation", {:negation, {:union, [{:literal, :a}, {:literal, :b}]}}, {:negation, {:union, [{:literal, :a}, {:literal, :b}]}} ) # --- Test Section: Complex Nested Cases --- IO.puts("\n--- Section: Complex Nested Cases ---") complex_spec = {:union, [ :atom, # simplifies to :integer {:intersect, [:any, :integer, {:intersect, [:integer]}]}, # simplifies to :list {:union, [:none, :list]} ]} test( "Handles complex nested simplifications correctly", {:union, [:atom, :integer, :list]}, complex_spec ) # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All TypeSpec tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures:") Enum.each(failures, &IO.puts(" - #{&1}")) end end end defmodule TddVariableTests do alias Tdd.Variable alias Tdd.TypeSpec # Simple test helper function defp test(name, expected, result) do current_failures = Process.get(:test_failures, []) if expected == result do IO.puts("[PASS] #{name}") else IO.puts("[FAIL] #{name}") IO.puts(" Expected: #{inspect(expected)}") IO.puts(" Got: #{inspect(result)}") Process.put(:test_failures, [name | current_failures]) end end def run() do IO.puts("\n--- Running Tdd.Variable Tests ---") Process.put(:test_failures, []) # --- Test Section: Variable Structure --- IO.puts("\n--- Section: Variable Structure ---") test("v_is_atom returns correct tuple", {0, :is_atom, nil, nil}, Variable.v_is_atom()) test("v_atom_eq returns correct tuple", {1, :value, :foo, nil}, Variable.v_atom_eq(:foo)) test("v_int_lt returns correct tuple", {2, :alt, 10, nil}, Variable.v_int_lt(10)) test( "v_tuple_size_eq returns correct tuple", {4, :a_size, 2, nil}, Variable.v_tuple_size_eq(2) ) test( "v_tuple_elem_pred nests a variable correctly", {4, :b_element, 0, {0, :is_integer, nil, nil}}, Variable.v_tuple_elem_pred(0, Variable.v_is_integer()) ) test( "v_list_is_empty returns correct tuple", {5, :b_is_empty, nil, nil}, Variable.v_list_is_empty() ) test( "v_list_head_pred nests a variable correctly", {5, :c_head, {0, :is_atom, nil, nil}, nil}, Variable.v_list_head_pred(Variable.v_is_atom()) ) # test( # "v_list_all_elements_are nests a TypeSpec correctly", # {5, :a_all_elements, {:union, [:atom, :integer]}, nil}, # Variable.v_list_all_elements_are(TypeSpec.normalize({:union, [:integer, :atom]})) # ) # --- Test Section: Global Ordering --- IO.puts("\n--- Section: Global Ordering (Based on Elixir Term Comparison) ---") # Category 0 < Category 1 test( "Primary type var < Atom property var", true, Variable.v_is_tuple() < Variable.v_atom_eq(:anything) ) # Within Category 2: alt < beq < cgt test( "Integer :lt var < Integer :eq var", true, Variable.v_int_lt(10) < Variable.v_int_eq(10) ) test( "Integer :eq var < Integer :gt var", true, Variable.v_int_eq(10) < Variable.v_int_gt(10) ) # Within Category 2: comparison of value test( "Integer :eq(5) var < Integer :eq(10) var", true, Variable.v_int_eq(5) < Variable.v_int_eq(10) ) # Within Category 4: comparison of index test( "Tuple elem(0) var < Tuple elem(1) var", true, Variable.v_tuple_elem_pred(0, Variable.v_is_atom()) < Variable.v_tuple_elem_pred(1, Variable.v_is_atom()) ) # Within Category 4, same index: comparison of nested var test( "Tuple elem(0, atom) var < Tuple elem(0, int) var", true, Variable.v_tuple_elem_pred(0, Variable.v_is_atom()) < Variable.v_tuple_elem_pred(0, Variable.v_is_integer()) ) # IO.inspect(Variable.v_list_all_elements_are(:atom), # label: "Variable.v_list_all_elements_are(:atom)" # ) IO.inspect(Variable.v_list_is_empty(), label: "Variable.v_list_is_empty()") # test( # "List :a_all_elements var < List :b_is_empty var", # true, # Variable.v_list_all_elements_are(:atom) < Variable.v_list_is_empty() # ) test( "List :b_is_empty var < List :c_head var", true, Variable.v_list_is_empty() < Variable.v_list_head_pred(Variable.v_is_atom()) ) test( "List :c_head var < List :tail var", true, Variable.v_list_head_pred(Variable.v_is_atom()) < Variable.v_list_tail_pred(Variable.v_is_atom()) ) # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Tdd.Variable tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures.") end end end defmodule ConsistencyEngineTests do alias Tdd.Consistency.Engine alias Tdd.Variable defp test(name, expected, assumptions_map) do result = Engine.check(assumptions_map) # ... test reporting logic ... is_ok = expected == result status = if is_ok, do: "[PASS]", else: "[FAIL]" IO.puts("#{status} #{name}") unless is_ok do IO.puts(" Expected: #{inspect(expected)}, Got: #{inspect(result)}") Process.put(:test_failures, [name | Process.get(:test_failures, [])]) end end def run() do IO.puts("\n--- Running Tdd.Consistency.Engine Tests ---") Process.put(:test_failures, []) # --- Section: Basic & Implication Tests --- IO.puts("\n--- Section: Basic & Implication Tests ---") test("An empty assumption map is consistent", :consistent, %{}) test("A single valid assumption is consistent", :consistent, %{Variable.v_is_atom() => true}) test( "An implied contradiction is caught by expander", :contradiction, %{Variable.v_atom_eq(:foo) => true, Variable.v_is_atom() => false} ) test( "An implied contradiction is caught by expander", :contradiction, %{Variable.v_atom_eq(:foo) => true, Variable.v_is_atom() => false} ) test( "Implication creates a consistent set", :consistent, # implies is_atom=true %{Variable.v_atom_eq(:foo) => true} ) # --- Section: Primary Type Exclusivity --- IO.puts("\n--- Section: Primary Type Exclusivity ---") test( "Two primary types cannot both be true", :contradiction, %{Variable.v_is_atom() => true, Variable.v_is_integer() => true} ) test( "Two primary types implied to be true is a contradiction", :contradiction, %{Variable.v_atom_eq(:foo) => true, Variable.v_int_eq(5) => true} ) test( "One primary type true and another false is consistent", :consistent, %{Variable.v_is_atom() => true, Variable.v_is_integer() => false} ) # --- Section: Atom Consistency --- IO.puts("\n--- Section: Atom Consistency ---") test( "An atom cannot equal two different values", :contradiction, %{Variable.v_atom_eq(:foo) => true, Variable.v_atom_eq(:bar) => true} ) test( "An atom can equal one value", :consistent, %{Variable.v_atom_eq(:foo) => true} ) # --- Section: List Flat Consistency --- IO.puts("\n--- Section: List Flat Consistency ---") test( "A list cannot be empty and have a head property", :contradiction, %{ Variable.v_list_is_empty() => true, Variable.v_list_head_pred(Variable.v_is_atom()) => true } ) test( "A non-empty list can have a head property", :consistent, %{ Variable.v_list_is_empty() => false, Variable.v_list_head_pred(Variable.v_is_atom()) => true } ) test( "A non-empty list is implied by head property", :consistent, # implies is_empty=false %{Variable.v_list_head_pred(Variable.v_is_atom()) => true} ) # --- Section: Integer Consistency --- IO.puts("\n--- Section: Integer Consistency ---") test("int == 5 is consistent", :consistent, %{Variable.v_int_eq(5) => true}) test("int == 5 AND int == 10 is a contradiction", :contradiction, %{ Variable.v_int_eq(5) => true, Variable.v_int_eq(10) => true }) test("int < 10 AND int > 20 is a contradiction", :contradiction, %{ Variable.v_int_lt(10) => true, Variable.v_int_gt(20) => true }) test("int > 5 AND int < 4 is a contradiction", :contradiction, %{ Variable.v_int_gt(5) => true, Variable.v_int_lt(4) => true }) # 6 test("int > 5 AND int < 7 is consistent", :consistent, %{ Variable.v_int_gt(5) => true, Variable.v_int_lt(7) => true }) test("int == 5 AND int < 3 is a contradiction", :contradiction, %{ Variable.v_int_eq(5) => true, Variable.v_int_lt(3) => true }) test("int == 5 AND int > 10 is a contradiction", :contradiction, %{ Variable.v_int_eq(5) => true, Variable.v_int_gt(10) => true }) test("int == 5 AND int > 3 is consistent", :consistent, %{ Variable.v_int_eq(5) => true, Variable.v_int_gt(3) => true }) # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Consistency.Engine tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures.") end end end defmodule TddAlgoTests do alias Tdd.Store alias Tdd.Variable alias Tdd.Algo # We need this to create stable variables alias Tdd.TypeSpec # --- Test Helper --- defp test(name, expected, result) do # A simple equality test is sufficient here. if expected == result do IO.puts("[PASS] #{name}") else IO.puts("[FAIL] #{name}") IO.puts(" Expected: #{inspect(expected)}") IO.puts(" Got: #{inspect(result)}") Process.put(:test_failures, [name | Process.get(:test_failures, [])]) end end # Helper to pretty print a TDD for debugging defp print_tdd(id, indent \\ 0) do prefix = String.duplicate(" ", indent) case Store.get_node(id) do {:ok, details} -> IO.puts("#{prefix}ID #{id}: #{inspect(details)}") case details do {_var, y, n, d} -> IO.puts("#{prefix} Yes ->") print_tdd(y, indent + 1) IO.puts("#{prefix} No ->") print_tdd(n, indent + 1) IO.puts("#{prefix} DC ->") print_tdd(d, indent + 1) _ -> :ok end {:error, reason} -> IO.puts("#{prefix}ID #{id}: Error - #{reason}") end end # --- Test Runner --- def run() do IO.puts("\n--- Running Tdd.Algo & Tdd.Consistency.Engine Tests ---") Process.put(:test_failures, []) # Setup: Initialize the store and define some basic TDDs using the new modules. Store.init() true_id = Store.true_node_id() false_id = Store.false_node_id() # --- Manually build some basic type TDDs for testing --- # t_atom = if is_atom then true else false t_atom = Store.find_or_create_node(Variable.v_is_atom(), true_id, false_id, false_id) # t_int = if is_int then true else false t_int = Store.find_or_create_node(Variable.v_is_integer(), true_id, false_id, false_id) # t_foo = if is_atom then (if value == :foo then true else false) else false foo_val_check = Store.find_or_create_node(Variable.v_atom_eq(:foo), true_id, false_id, false_id) t_foo = Store.find_or_create_node(Variable.v_is_atom(), foo_val_check, false_id, false_id) # t_bar = if is_atom then (if value == :bar then true else false) else false bar_val_check = Store.find_or_create_node(Variable.v_atom_eq(:bar), true_id, false_id, false_id) t_bar = Store.find_or_create_node(Variable.v_is_atom(), bar_val_check, false_id, false_id) # --- Section: Negate Algorithm --- IO.puts("\n--- Section: Algo.negate ---") negated_true = Algo.negate(true_id) test("negate(true) is false", false_id, negated_true) negated_false = Algo.negate(false_id) test("negate(false) is true", true_id, negated_false) # Double negation should be identity test("negate(negate(t_atom)) is t_atom", t_atom, Algo.negate(Algo.negate(t_atom))) # --- Section: Apply Algorithm (Union & Intersection) --- IO.puts("\n--- Section: Algo.apply (raw structural operations) ---") op_sum = fn :true_terminal, _ -> :true_terminal _, :true_terminal -> :true_terminal t, :false_terminal -> t :false_terminal, t -> t end op_intersect = fn :false_terminal, _ -> :false_terminal _, :false_terminal -> :false_terminal t, :true_terminal -> t :true_terminal, t -> t end # atom | int sum_atom_int = Algo.apply(:sum, op_sum, t_atom, t_int) # The result should be a node that checks is_atom, then if false, checks is_int # We expect a structure like: if is_atom -> true, else -> t_int is_atom_node = {Variable.v_is_atom(), true_id, t_int, t_int} expected_sum_structure_id = Store.find_or_create_node( elem(is_atom_node, 0), elem(is_atom_node, 1), elem(is_atom_node, 2), elem(is_atom_node, 3) ) test("Structure of 'atom | int' is correct", expected_sum_structure_id, sum_atom_int) # :foo & :bar (structurally, before simplification) # It should build a tree that checks is_atom, then value==:foo, then value==:bar # This will be complex, but the key is that it's NOT the false_id yet. intersect_foo_bar_raw = Algo.apply(:intersect, op_intersect, t_foo, t_bar) test(":foo & :bar (raw) is not the false node", false, intersect_foo_bar_raw == false_id) # --- Section: Simplify Algorithm (Flat Types) --- IO.puts("\n--- Section: Algo.simplify (with Consistency.Engine) ---") # An impossible structure: node that requires a value to be an atom AND an integer # This tests the `check_primary_exclusivity` rule. contradictory_assumptions = %{Variable.v_is_atom() => true, Variable.v_is_integer() => true} # Simplifying ANYTHING under contradictory assumptions should yield `false`. simplified_under_contradiction = Algo.simplify(true_id, contradictory_assumptions) test( "Simplifying under contradictory assumptions (atom & int) results in false", false_id, simplified_under_contradiction ) # Test implication: A property implies its primary type # A value being `:foo` implies it is an atom. assumptions_with_foo = %{Variable.v_atom_eq(:foo) => true} # If we simplify t_int under this assumption, it should become false. # The engine expands to `{is_atom: true, value==:foo: true}`. Then it sees that # the t_int node's variable `is_integer` must be false (from exclusivity rule). simplified_int_given_foo = Algo.simplify(t_int, assumptions_with_foo) test( "Simplifying 'integer' given 'value==:foo' results in false", false_id, simplified_int_given_foo ) # Now, let's simplify the raw intersection of :foo and :bar simplified_foo_bar = Algo.simplify(intersect_foo_bar_raw, %{}) # The simplify algorithm should discover the contradiction that an atom cannot be # both :foo and :bar at the same time. (This requires `check_atom_consistency` to be implemented). # For now, we stub it and test the plumbing. # Let's test a simpler contradiction that we *have* implemented. intersect_atom_int_raw = Algo.apply(:intersect, op_intersect, t_atom, t_int) simplified_atom_int = Algo.simplify(intersect_atom_int_raw, %{}) test("Simplifying 'atom & int' results in false", false_id, simplified_atom_int) # Test path collapsing # If we simplify 'atom | int' under the assumption 'is_atom == true', it should become `true`. simplified_sum_given_atom = Algo.simplify(sum_atom_int, %{Variable.v_is_atom() => true}) test( "Simplifying 'atom | int' given 'is_atom==true' results in true", true_id, simplified_sum_given_atom ) # If we simplify 'atom | int' under the assumption 'is_atom == false', it should become `t_int`. simplified_sum_given_not_atom = Algo.simplify(sum_atom_int, %{Variable.v_is_atom() => false}) test( "Simplifying 'atom | int' given 'is_atom==false' results in 'integer'", t_int, simplified_sum_given_not_atom ) # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Tdd.Algo tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures.") # Optional: print details of failed tests if needed end end end defmodule TypeReconstructorTests do alias Tdd.TypeReconstructor alias Tdd.Variable alias Tdd.TypeSpec defp test(name, expected_spec, assumptions) do # Normalize both expected and result for a canonical comparison expected = TypeSpec.normalize(expected_spec) result = TypeSpec.normalize(TypeReconstructor.spec_from_assumptions(assumptions)) is_ok = expected == result status = if is_ok, do: "[PASS]", else: "[FAIL]" IO.puts("#{status} #{name}") unless is_ok do IO.puts(" Expected: #{inspect(expected)}") IO.puts(" Got: #{inspect(result)}") Process.put(:test_failures, [name | Process.get(:test_failures, [])]) end end def run() do IO.puts("\n--- Running Tdd.TypeReconstructor Tests ---") Process.put(:test_failures, []) # --- Section: Basic Flat Reconstructions --- IO.puts("\n--- Section: Basic Flat Reconstructions ---") test("is_atom=true -> atom", :atom, %{Variable.v_is_atom() => true}) test("is_atom=false -> ¬atom", {:negation, :atom}, %{Variable.v_is_atom() => false}) test( "is_atom=true AND value==:foo -> :foo", {:literal, :foo}, %{Variable.v_is_atom() => true, Variable.v_atom_eq(:foo) => true} ) test( "is_atom=true AND value!=:foo -> atom & ¬:foo", {:intersect, [:atom, {:negation, {:literal, :foo}}]}, %{Variable.v_is_atom() => true, Variable.v_atom_eq(:foo) => false} ) test( "is_integer=true AND int==5 -> 5", {:literal, 5}, %{Variable.v_is_integer() => true, Variable.v_int_eq(5) => true} ) test( "is_list=true AND is_empty=true -> []", {:literal, []}, %{Variable.v_is_list() => true, Variable.v_list_is_empty() => true} ) # --- Section: Combined Flat Reconstructions --- IO.puts("\n--- Section: Combined Flat Reconstructions ---") test( "int > 10 AND int < 20", # This is complex. Our simple reconstructor makes two separate ranges. # A more advanced one would combine them into a single {:integer_range, 11, 19}. # For now, we test the current behavior. {:intersect, [ :integer, {:integer_range, 11, :pos_inf}, {:integer_range, :neg_inf, 19} ]}, %{Variable.v_int_gt(10) => true, Variable.v_int_lt(20) => true} ) # --- Section: Recursive Reconstructions (Simplified) --- IO.puts("\n--- Section: Recursive Reconstructions ---") # This tests the partitioning and recursive call logic. # Our simple implementation of recursive cases means we can only test simple things. test( "head is an atom", {:intersect, [:list, {:cons, :atom, :any}]}, # Assumption for `is_list=true` is implied by `v_list_head_pred` %{Variable.v_list_head_pred(Variable.v_is_atom()) => true} ) # Note: The recursive tests are limited by the simplifications made in the # implementation (e.g., tuple reconstruction). A full implementation would # require more context (like tuple size) to be passed down. # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All TypeReconstructor tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures.") end end end defmodule CompilerAlgoTests do alias Tdd.Compiler alias Tdd.Store alias Tdd.Algo # High-level helpers that mimic the final API # defp is_subtype(spec1, spec2) do # id1 = Compiler.spec_to_id(spec1) # id2 = Compiler.spec_to_id(spec2) # # The subtyping check is: `A <: B` if and only if `A & ~B` is empty (`:none`). # neg_id2 = Algo.negate(id2) # # op_intersect = fn # :false_terminal, _ -> :false_terminal # _, :false_terminal -> :false_terminal # t, :true_terminal -> t # :true_terminal, t -> t # # Default case for non-terminal nodes, though apply handles recursion # _t1, _t2 -> :non_terminal # end # # intersect_id = Algo.apply(:intersect, op_intersect, id1, neg_id2) # final_id = Algo.simplify(intersect_id) # final_id == Store.false_node_id() # end defp are_equivalent(spec1, spec2) do Compiler.spec_to_id(spec1) == Compiler.spec_to_id(spec2) end defp is_contradiction(spec) do Compiler.spec_to_id(spec) == Store.false_node_id() end defp test_subtype(name, expected, s1, s2), do: test(name, expected, Compiler.is_subtype(s1, s2)) defp test_equiv(name, expected, s1, s2), do: test(name, expected, are_equivalent(s1, s2)) defp test_contradiction(name, expected \\ true), do: &test(name, expected, is_contradiction(&1)) defp test(name, exp, res) do is_ok = exp == res status = if is_ok, do: "[PASS]", else: "[FAIL]" IO.puts("#{status} #{name}") unless is_ok do IO.puts(" Expected: #{inspect(exp)}") IO.puts(" Got: #{inspect(res)}") Process.put(:test_failures, [name | Process.get(:test_failures, [])]) end end def run() do IO.puts("\n--- Running Compiler & Algo Integration Tests ---") Process.put(:test_failures, []) # Setup Tdd.Store.init() # --- Section: Basic Compilation & Equivalence --- IO.puts("\n--- Section: Basic Equivalences ---") test_equiv("atom & any == atom", true, {:intersect, [:atom, :any]}, :atom) test_equiv("atom | none == atom", true, {:union, [:atom, :none]}, :atom) test_equiv("atom & int == none", true, {:intersect, [:atom, :integer]}, :none) test_equiv("¬(¬atom) == atom", true, {:negation, {:negation, :atom}}, :atom) test_equiv("atom | atom == atom", true, {:union, [:atom, :atom]}, :atom) # --- Section: Basic Subtyping --- IO.puts("\n--- Section: Basic Subtyping ---") test_subtype(":foo <: atom", true, {:literal, :foo}, :atom) test_subtype("atom <: :foo", false, :atom, {:literal, :foo}) test_subtype(":foo <: integer", false, {:literal, :foo}, :integer) test_subtype("int==5 <: integer", true, {:literal, 5}, :integer) test_subtype("none <: atom", true, :none, :atom) test_subtype("atom <: any", true, :atom, :any) # --- Section: Integer Range Logic --- IO.puts("\n--- Section: Integer Range Logic ---") int_5_to_10 = {:integer_range, 5, 10} int_7_to_8 = {:integer_range, 7, 8} int_15_to_20 = {:integer_range, 15, 20} int_0_to_100 = {:integer_range, 0, 100} test_subtype("range(7..8) <: range(5..10)", true, int_7_to_8, int_5_to_10) test_subtype("range(5..10) <: range(7..8)", false, int_5_to_10, int_7_to_8) test_subtype("range(5..10) <: range(15..20)", false, int_5_to_10, int_15_to_20) test_equiv( "range(5..10) & range(7..8) == range(7..8)", true, {:intersect, [int_5_to_10, int_7_to_8]}, int_7_to_8 ) test_equiv( "range(5..10) & range(0..100) == range(5..10)", true, {:intersect, [int_5_to_10, int_0_to_100]}, int_5_to_10 ) test_equiv( "range(5..10) | range(7..8) == range(5..10)", true, {:union, [int_5_to_10, int_7_to_8]}, int_5_to_10 ) # --- Section: Contradictions & Simplifications --- IO.puts("\n--- Section: Contradictions & Simplifications ---") test_contradiction("atom & integer").({:intersect, [:atom, :integer]}) test_contradiction(":foo & :bar").({:intersect, [{:literal, :foo}, {:literal, :bar}]}) test_contradiction("atom & (int==5)").({:intersect, [:atom, {:literal, 5}]}) test_contradiction("range(5..10) & range(15..20)").({:intersect, [int_5_to_10, int_15_to_20]}) test_contradiction("integer & ¬integer").({:intersect, [:integer, {:negation, :integer}]}) # --- Section: Subtype Reduction in Normalization --- IO.puts("\n--- Section: Subtype Reduction Logic ---") test_equiv( "(:foo | :bar | atom) simplifies to atom", true, {:union, [{:literal, :foo}, {:literal, :bar}, :atom]}, :atom ) test_equiv( "(range(5..10) | integer) simplifies to integer", true, {:union, [int_5_to_10, :integer]}, :integer ) test_equiv( "(:foo & atom) simplifies to :foo", true, {:intersect, [{:literal, :foo}, :atom]}, {:literal, :foo} ) test_equiv( "(range(5..10) & integer) simplifies to range(5..10)", true, {:intersect, [int_5_to_10, :integer]}, int_5_to_10 ) # --- Section: Logical Laws (Distribution and De Morgan's) --- IO.puts("\n--- Section: Logical Laws ---") # De Morgan's Law: ¬(A | B) == (¬A & ¬B) spec_not_a_or_b = {:negation, {:union, [:atom, :integer]}} spec_not_a_and_not_b = {:intersect, [{:negation, :atom}, {:negation, :integer}]} test_equiv( "De Morgan's (¬(A|B) == ¬A & ¬B) holds", true, spec_not_a_or_b, spec_not_a_and_not_b ) # De Morgan's Law: ¬(A & B) == (¬A | ¬B) spec_not_a_and_b = {:negation, {:intersect, [{:literal, :foo}, int_5_to_10]}} spec_not_a_or_not_b = {:union, [{:negation, {:literal, :foo}}, {:negation, int_5_to_10}]} test_equiv( "De Morgan's (¬(A&B) == ¬A | ¬B) holds", true, spec_not_a_and_b, spec_not_a_or_not_b ) # Distributive Law: A & (B | C) == (A & B) | (A & C) spec_a = :integer spec_b = {:integer_range, 0, 10} spec_c = {:integer_range, 20, 30} spec_dist_lhs = {:intersect, [spec_a, {:union, [spec_b, spec_c]}]} spec_dist_rhs = {:union, [{:intersect, [spec_a, spec_b]}, {:intersect, [spec_a, spec_c]}]} test_equiv( "Distributive Law (A & (B|C)) holds", true, spec_dist_lhs, spec_dist_rhs ) # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Compiler & Algo Integration tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures.") end end end defmodule TddCompilerRecursiveTests do alias Tdd.Compiler alias Tdd.Store alias Tdd.Algo alias Tdd.TypeSpec # --- Test Runner --- def run() do IO.puts("\n--- Running Tdd.Compiler Recursive Type Tests ---") Process.put(:test_failures, []) Tdd.Store.init() # --- Tests for :cons --- IO.puts("\n--- Section: :cons ---") test_subtype(":cons is a subtype of :list", true, {:cons, :atom, :list}, :list) test_subtype( ":cons is not a subtype of the empty list", false, {:cons, :atom, :list}, {:literal, []} ) test_subtype( "cons(integer, list) is a subtype of cons(any, any)", true, {:cons, :integer, :list}, {:cons, :any, :any} ) test_subtype( "cons(any, any) is not a subtype of cons(integer, list)", false, {:cons, :any, :any}, {:cons, :integer, :list} ) # --- Tests for :tuple --- IO.puts("\n--- Section: :tuple ---") test_subtype( "{:tuple, [atom, int]} is a subtype of :tuple", true, {:tuple, [:atom, :integer]}, :tuple ) test_subtype( "{:tuple, [atom, int]} is not a subtype of :list", false, {:tuple, [:atom, :integer]}, :list ) test_subtype( "a tuple of size 2 is not a subtype of a tuple of size 3", false, {:tuple, [:atom, :integer]}, {:tuple, [:atom, :integer, :list]} ) spec_specific = {:tuple, [{:literal, :a}, {:literal, 1}]} spec_general = {:tuple, [:atom, :integer]} spec_unrelated = {:tuple, [:list, :list]} test_subtype( "subtype check works element-wise (specific <: general)", true, spec_specific, spec_general ) test_subtype( "subtype check works element-wise (general test_subtype( "list_of(supertype) is not a subtype of list_of(subtype)", false, {:list_of, :integer}, {:list_of, {:literal, 1}} ) # end) list_with_int = {:cons, :integer, {:literal, []}} list_of_atoms = {:list_of, :atom} test_subtype( "a list with a wrong element type is not a subtype of list_of(E)", false, list_with_int, list_of_atoms ) list_with_atom = {:cons, :atom, {:literal, []}} # Tdd.Debug.run(fn -> test_subtype( "a list with a correct element type is a subtype of list_of(E)", true, list_with_atom, list_of_atoms ) # end) # --- Equivalence tests --- IO.puts("\n--- Section: Equivalence ---") e_spec = :integer list_of_e = {:list_of, e_spec} recursive_def = TypeSpec.normalize({:union, [{:literal, []}, {:cons, e_spec, list_of_e}]}) test_equiv( "the recursive definition holds: list_of(E) == [] | cons(E, list_of(E))", true, list_of_e, recursive_def ) int_range_1 = {:integer_range, 0, 10} int_range_2 = {:integer_range, 5, 15} int_range_intersect = {:integer_range, 5, 10} list_of_1 = {:list_of, int_range_1} list_of_2 = {:list_of, int_range_2} list_of_intersect = {:list_of, int_range_intersect} combined_spec = {:intersect, [list_of_1, list_of_2]} test_equiv( "intersection of two list_of types works correctly", true, combined_spec, list_of_intersect ) # --- Final Report --- failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Tdd.Compiler Recursive Type tests passed!") else IO.puts("\n❌ Found #{length(failures)} test failures.") end end # --- Private Test Helpers --- defp test(name, expected, result) do if expected == result do IO.puts("[PASS] #{name}") else IO.puts("[FAIL] #{name}") IO.puts(" Expected: #{inspect(expected)}") IO.puts(" Got: #{inspect(result)}") Process.put(:test_failures, [name | Process.get(:test_failures, [])]) end end defp test_equiv(name, expected, spec1, spec2) do result = Compiler.spec_to_id(spec1) == Compiler.spec_to_id(spec2) test(name, expected, result) end defp test_subtype(name, expected, spec1, spec2) do result = Compiler.is_subtype(spec1, spec2) test(name, expected, result) end # --- Private Logic Helpers --- defp do_is_subtype(spec1, spec2) do id1 = Compiler.spec_to_id(spec1) id2 = Compiler.spec_to_id(spec2) # A <: B <=> A & ~B == none intersect_id = Algo.apply(:intersect, &op_intersect_terminals/2, id1, Algo.negate(id2)) final_id = Algo.simplify(intersect_id) final_id == Store.false_node_id() end defp op_intersect_terminals(u1_details, u2_details) do case {u1_details, u2_details} do {:false_terminal, _} -> :false_terminal {_, :false_terminal} -> :false_terminal {:true_terminal, t2} -> t2 {t1, :true_terminal} -> t1 end end end # test/tdd/type_spec_advanced_tests.exs defmodule Tdd.TypeSpecAdvancedTests do alias Tdd.TypeSpec # Test helper for regular normalization checks defp test(name, expected_spec, input_spec) do current_failures = Process.get(:test_failures, []) normalized_result = TypeSpec.normalize(input_spec) is_equal = (expected_spec == normalized_result) if is_equal do IO.puts("[PASS] #{name}") else IO.puts("[FAIL] #{name}") IO.puts(" Input: #{inspect(input_spec)}") IO.puts(" Expected: #{inspect(expected_spec)}") IO.puts(" Got: #{inspect(normalized_result)}") Process.put(:test_failures, [name | current_failures]) end end # Test helper for checking raised errors (same as before) defp test_raise(name, expected_error_struct, expected_message_regex, input_spec) do current_failures = Process.get(:test_failures, []) error_caught = try do TypeSpec.normalize(input_spec) # No error caught nil rescue e -> if is_struct(e, expected_error_struct) do e else # Catch other errors differently {:unexpected_error, e} end end cond do is_nil(error_caught) -> IO.puts("[FAIL] #{name}") IO.puts(" Expected error: #{inspect(expected_error_struct)} matching ~r/#{inspect(expected_message_regex)}/") IO.puts(" Got: No error") Process.put(:test_failures, [name | current_failures]) match?({:unexpected_error, _}, error_caught) -> {:unexpected_error, e} = error_caught IO.puts("[FAIL] #{name} (Unexpected Error Type)") IO.puts(" Expected error: #{inspect(expected_error_struct)} matching ~r/#{inspect(expected_message_regex)}/") IO.puts(" Got error: #{inspect(e)}") Process.put(:test_failures, [name | current_failures]) (is_struct(error_caught, expected_error_struct) or (is_tuple(error_caught) and elem(error_caught, 0) == expected_error_struct)) and (is_nil(expected_message_regex) or String.match?(Exception.message(error_caught), expected_message_regex)) -> IO.puts("[PASS] #{name}") true -> IO.puts("[FAIL] #{name}") IO.puts(" Expected error: #{inspect(expected_error_struct)} matching ~r/#{inspect(expected_message_regex)}/") IO.puts(" Got error: #{inspect(error_caught)}") IO.puts(" Message: #{inspect(Exception.message(error_caught))}") Process.put(:test_failures, [name | current_failures]) end end def run() do IO.puts("\n--- Running Tdd.TypeSpec Advanced Normalization Tests ---") Process.put(:test_failures, []) # --- Section: μ-type (Recursive Type) Normalization --- IO.puts("\n--- Section: μ-type (Recursive Type) Normalization ---") test( "basic alpha-conversion for μ-variable", {:mu, :m_var0, {:type_var, :m_var0}}, {:mu, :X, {:type_var, :X}} ) test( "alpha-conversion with nested μ-variable (depth-first renaming)", {:mu, :m_var0, {:mu, :m_var1, {:union, [{:type_var, :m_var0}, {:type_var, :m_var1}]}}}, # Body union already sorted by var name {:mu, :X, {:mu, :Y, {:union, [{:type_var, :X}, {:type_var, :Y}]}}} ) test( "alpha-conversion order matters for canonical names (1)", # With subtype reduction deferred, both branches should survive pass1 and get canonical names. # The final apply_subtype_reduction will sort the outer union. # Let's assume m1_spec sorts before m2_spec if they are different after canonical renaming. # Expected: m0 ( union(m1(m0|m1) , m2(m0|m2)) ) - sort order of m1_spec and m2_spec depends on their full structure. # Since :m_var1 and :m_var2 are the only difference, the one with :m_var1 comes first. {:mu, :m_var0, {:union, [ {:mu, :m_var1, {:union, [{:type_var, :m_var0}, {:type_var, :m_var1}]}}, # Inner union sorted {:mu, :m_var2, {:union, [{:type_var, :m_var0}, {:type_var, :m_var2}]}} # Inner union sorted ]}}, {:mu, :A, {:union, [ {:mu, :B, {:union, [{:type_var, :A}, {:type_var, :B}]}}, {:mu, :C, {:union, [{:type_var, :A}, {:type_var, :C}]}} ]}} ) test( "body of μ-type is normalized (sorted union, duplicates removed by final pass)", # apply_subtype_reduction will sort and unique the union members. {:mu, :m_var0, {:union, [:integer, {:type_var, :m_var0}]}}, # :integer then :type_var {:mu, :Rec, {:union, [:integer, {:type_var, :Rec}, :integer, :none]}} ) test( "list_of(integer) normalizes to a μ-expression with canonical var", # Expected: {:literal, []} sorts before {:cons, ...} {:mu, :m_var0, {:union, [{:literal, []}, {:cons, :integer, {:type_var, :m_var0}}]}}, {:list_of, :integer} ) test( "list_of(list_of(atom)) normalizes to nested μ-expressions", {:mu, :m_var0, {:union, [ {:literal, []}, # Sorted first {:cons, {:mu, :m_var1, {:union, [{:literal, []}, {:cons, :atom, {:type_var, :m_var1}}]} # Inner sorted }, {:type_var, :m_var0}} ]}}, {:list_of, {:list_of, :atom}} ) # --- Section: Λ-type (Type Lambda) Normalization --- IO.puts("\n--- Section: Λ-type (Type Lambda) Normalization ---") test( "basic alpha-conversion for Λ-parameters", {:type_lambda, [:lambda_var0], {:type_var, :lambda_var0}}, {:type_lambda, [:T], {:type_var, :T}} ) test( "multiple Λ-parameters alpha-converted (sorted by canonical name)", {:type_lambda, [:lambda_var0, :lambda_var1], {:tuple, [{:type_var, :lambda_var0}, {:type_var, :lambda_var1}]}}, {:type_lambda, [:K, :V], {:tuple, [{:type_var, :K}, {:type_var, :V}]}} ) test( "body of Λ-type is normalized", # :integer then :type_var {:type_lambda, [:lambda_var0], {:union, [:integer, {:type_var, :lambda_var0}]}}, {:type_lambda, [:T], {:union, [:integer, {:type_var, :T}, :integer, :none]}} ) test( "nested lambda alpha-conversion (depth-first renaming)", {:type_lambda, [:lambda_var0], {:type_lambda, [:lambda_var1], {:tuple, [{:type_var, :lambda_var0}, {:type_var, :lambda_var1}]}}}, {:type_lambda, [:X], {:type_lambda, [:Y], {:tuple, [{:type_var, :X}, {:type_var, :Y}]}}} ) test( "lambda and mu interaction for canonical names", # Union body: {:type_var, :lambda_var0} sorts before {:type_var, :m_var0} {:type_lambda, [:lambda_var0], {:mu, :m_var0, {:union, [{:type_var, :lambda_var0}, {:type_var, :m_var0}]}}}, {:type_lambda, [:T], {:mu, :X, {:union, [{:type_var, :T}, {:type_var, :X}]}}} ) test( "mu and lambda interaction for canonical names", # Union body: {:type_var, :lambda_var0} sorts before {:type_var, :m_var0} {:mu, :m_var0, {:type_lambda, [:lambda_var0], {:union, [{:type_var, :lambda_var0}, {:type_var, :m_var0}]}}}, {:mu, :X, {:type_lambda, [:T], {:union, [{:type_var, :X}, {:type_var, :T}]}}} ) # --- Section: Type Application Normalization (Beta-Reduction) --- IO.puts("\n--- Section: Type Application Normalization (Beta-Reduction) ---") test( "simple application: (ΛT.T) integer -> integer", :integer, {:type_apply, {:type_lambda, [:T], {:type_var, :T}}, [:integer]} ) test( "application with structure: (ΛT. list_of(T)) atom -> list_of(atom) (normalized form)", # Expected: normalized form of list_of(atom) {:mu, :m_var0, {:union, [{:literal, []}, {:cons, :atom, {:type_var, :m_var0}}]}}, {:type_apply, {:type_lambda, [:T], {:list_of, {:type_var, :T}}}, [:atom]} ) test( "application with multiple args: (ΛK,V. {K,V}) atom,integer -> {atom,integer}", {:tuple, [:atom, :integer]}, {:type_apply, {:type_lambda, [:K, :V], {:tuple, [{:type_var, :K}, {:type_var, :V}]}}, [:atom, :integer]} ) test( "application resulting in a mu-type that needs further normalization after substitution", # Union: :integer then :type_var {:mu, :m_var0, {:union, [:integer, {:type_var, :m_var0}]}}, {:type_apply, {:type_lambda, [:T], {:mu, :X, {:union, [{:type_var, :T}, {:type_var, :X}]}}}, [:integer]} ) test_raise( "arity mismatch in application raises error (too many args)", RuntimeError, ~r/Arity mismatch/, {:type_apply, {:type_lambda, [:T], {:type_var, :T}}, [:integer, :atom]} ) test_raise( "arity mismatch in application raises error (too few args)", RuntimeError, ~r/Arity mismatch/, {:type_apply, {:type_lambda, [:T, :U], {:type_var, :T}}, [:integer]} ) test( "application of non-lambda (e.g. type_var) remains unreduced", {:type_apply, {:type_var, :F}, [:integer]}, {:type_apply, {:type_var, :F}, [:integer]} ) test( "substitution avoids capture of free variable in argument by inner lambda", {:type_lambda, [:lambda_var0], {:tuple, [{:type_var, :Y_free}, {:type_var, :lambda_var0}]}}, ( y_free_spec = {:type_var, :Y_free} inner_lambda = {:type_lambda, [:Y_bound], {:tuple, [{:type_var, :X}, {:type_var, :Y_bound}]}} outer_lambda = {:type_lambda, [:X], inner_lambda} {:type_apply, outer_lambda, [y_free_spec]} ) ) test( "application with nested lambdas and mus, complex substitution and renaming", # Expected: list_of(atom) normalized {:mu, :m_var0, {:union, [{:literal, []}, {:cons, :atom, {:type_var, :m_var0}}]}}, ( id_lambda = {:type_lambda, [:Tparam], {:type_var, :Tparam}} list_lambda = {:type_lambda, [:Eparam], {:list_of, {:type_var, :Eparam}} } id_applied_to_atom = {:type_apply, id_lambda, [:atom]} {:type_apply, list_lambda, [id_applied_to_atom]} ) ) # --- Section: Interaction with Union/Intersection --- IO.puts("\n--- Section: Interaction with Union/Intersection ---") test( "union members are normalized with mu and apply (sorted result)", # :atom sorts before :integer {:union, [:atom, :integer]}, {:union, [:integer, {:type_apply, {:type_lambda, [:T], {:type_var, :T}}, [:atom]}]} ) # list_of_int_normalized will be {:mu, :m_var0, {:union, [{:literal, []}, {:cons, :integer, {:type_var, :m_var0}}]}} list_of_int_normalized = TypeSpec.normalize({:list_of, :integer}) test( "list_of inside a union gets normalized and union sorted", # :atom sorts before {:mu, ...} {:union, [:atom, list_of_int_normalized]}, {:union, [:atom, {:list_of, :integer}]} ) test( "Normalization of type_apply within intersection, then intersection simplification", :integer, {:intersect, [:any, {:type_apply, {:type_lambda, [:T], {:type_var, :T}}, [:integer]}]} ) # Final Report failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Tdd.TypeSpec Advanced Normalization tests passed!") else IO.puts("\n❌ Found #{length(failures)} Tdd.TypeSpec Advanced Normalization test failures:") Enum.each(Enum.reverse(failures), &IO.puts(" - #{&1}")) end length(failures) == 0 end end defmodule Tdd.CompilerAdvancedTests do alias Tdd.Compiler alias Tdd.Store alias Tdd.TypeSpec # For constructing specs # Helper to run tests defp test(name, expected, actual_fun_call_result) do # For subtyping, expected is boolean. For equivalence, compare TDD IDs. if expected == actual_fun_call_result do IO.puts("[PASS] #{name}") else IO.puts("[FAIL] #{name}") IO.puts(" Expected: #{inspect(expected)}") IO.puts(" Got: #{inspect(actual_fun_call_result)}") Process.put(:test_failures, [name | Process.get(:test_failures, [])]) end end defp test_subtype(name, expected_bool, spec1, spec2) do test(name, expected_bool, Tdd.Compiler.is_subtype(spec1, spec2)) end defp test_equivalent_tdd(name, spec1, spec2) do id1 = Tdd.Compiler.spec_to_id(spec1) id2 = Tdd.Compiler.spec_to_id(spec2) test(name, id1, id2) # Test that their TDD IDs are the same end defp test_compiles_to_none(name, spec) do id = Tdd.Compiler.spec_to_id(spec) test(name, Tdd.Store.false_node_id(), id) end defp test_compiles_to_any(name, spec) do id = Tdd.Compiler.spec_to_id(spec) test(name, Tdd.Store.true_node_id(), id) end defp test_raise_compile(name, expected_error_struct, expected_message_regex, input_spec) do current_failures = Process.get(:test_failures, []) error_caught = try do Tdd.Compiler.spec_to_id(input_spec) nil # No error rescue e -> if is_struct(e, expected_error_struct) or (is_tuple(e) and elem(e,0) == expected_error_struct and expected_error_struct == RuntimeError) do # RuntimeError is {RuntimeError, %{message: "..."}} e else {:unexpected_error, e} end end cond do is_nil(error_caught) -> IO.puts("[FAIL] #{name}") IO.puts(" Expected error: #{inspect(expected_error_struct)} matching ~r/#{inspect(expected_message_regex)}/") IO.puts(" Got: No error") Process.put(:test_failures, [name | current_failures]) match?({:unexpected_error, _}, error_caught) -> {:unexpected_error, e} = error_caught IO.puts("[FAIL] #{name} (Unexpected Error Type)") IO.puts(" Expected error: #{inspect(expected_error_struct)} matching ~r/#{inspect(expected_message_regex)}/") IO.puts(" Got error: #{inspect(e)}") Process.put(:test_failures, [name | current_failures]) (is_struct(error_caught, expected_error_struct) or (is_tuple(error_caught) and elem(error_caught, 0) == expected_error_struct and expected_error_struct == RuntimeError)) and (is_nil(expected_message_regex) or String.match?(Exception.message(error_caught), expected_message_regex)) -> IO.puts("[PASS] #{name}") true -> IO.puts("[FAIL] #{name}") IO.puts(" Expected error: #{inspect(expected_error_struct)} matching ~r/#{inspect(expected_message_regex)}/") IO.puts(" Got error: #{inspect(error_caught)}") IO.puts(" Message: #{inspect(Exception.message(error_caught))}") Process.put(:test_failures, [name | current_failures]) end end def run() do IO.puts("\n--- Running Tdd.Compiler Advanced Feature Tests (μ, Λ, Apply) ---") Process.put(:test_failures, []) Tdd.Store.init() # Ensure store is fresh for each run module if tests are separate # --- Section: Basic μ-type compilation (via list_of normalization) --- IO.puts("\n--- Section: Basic μ-type (list_of) ---") int_list = {:list_of, :integer} any_list = {:list_of, :any} atom_list = {:list_of, :atom} test_subtype("list_of(integer) <: list_of(any)", true, int_list, any_list) test_subtype("list_of(any) <: list_of(integer)", false, any_list, int_list) test_subtype("list_of(integer) <: list_of(atom)", false, int_list, atom_list) # Test equivalence of list_of(E) and its explicit μ unfolding # TypeSpec.normalize will convert list_of to mu. So this tests mu compilation. list_of_int_norm = TypeSpec.normalize(int_list) # This is already {:mu, :m_var0, ...} test_equivalent_tdd("list_of(int) TDD is equivalent to its normalized mu-form TDD", int_list, list_of_int_norm) test_subtype("[] <: list_of(integer)", true, {:literal, []}, int_list) test_subtype("cons(1, []) <: list_of(integer)", true, {:cons, {:literal, 1}, {:literal, []}}, int_list) test_subtype("cons(:a, []) <: list_of(integer)", false, {:cons, {:literal, :a}, {:literal, []}}, int_list) test_subtype("cons(1, cons(:a, [])) <: list_of(integer)", false, {:cons, {:literal, 1}, {:cons, {:literal, :a}, {:literal, []}}}, int_list) # --- Section: Explicit μ-types --- IO.puts("\n--- Section: Explicit μ-types ---") # Binary Tree of Atoms: Tree = μX. (Empty | Node) # Using :empty_tree for the literal leaf for clarity. leaf_node = {:literal, :empty_tree} tree_spec = {:mu, :Tree, {:union, [ leaf_node, {:tuple, [:atom, {:type_var, :Tree}, {:type_var, :Tree}]} ]}} # Check it compiles without error first _tree_tdd_id = Tdd.Compiler.spec_to_id(tree_spec) test("Explicit mu-type (atom tree) compiles", true, is_integer(_tree_tdd_id)) # An instance of the tree simple_tree_instance = {:tuple, [:a, leaf_node, leaf_node]} test_subtype("Simple atom tree instance <: AtomTree", true, simple_tree_instance, tree_spec) non_tree_instance = {:tuple, [123, leaf_node, leaf_node]} # Integer instead of atom test_subtype("Non-atom tree instance ; Odd = Succ # Let's use a simpler form: Stream = μS. cons(T, S) int_stream_spec = {:mu, :S, {:cons, :integer, {:type_var, :S}}} _int_stream_id = Tdd.Compiler.spec_to_id(int_stream_spec) test("μ-type for int stream compiles", true, is_integer(_int_stream_id)) test_subtype("cons(1, cons(2, Stream)) <: Stream", true, {:cons, {:literal, 1}, {:cons, {:literal, 2}, int_stream_spec}}, int_stream_spec ) test_subtype("cons(:a, Stream) # This should normalize to the same spec as list_of(integer) list_of_int_from_apply = {:type_apply, gen_list_lambda, [:integer]} test_equivalent_tdd( "(ΛT. list_of(T)) TDD == list_of(integer) TDD", list_of_int_from_apply, int_list # which is {:list_of, :integer} ) # Apply to atom: GenList list_of_atom_from_apply = {:type_apply, gen_list_lambda, [:atom]} test_equivalent_tdd( "(ΛT. list_of(T)) TDD == list_of(atom) TDD", list_of_atom_from_apply, atom_list # which is {:list_of, :atom} ) # Test subtyping between instantiated types test_subtype( "(ΛT. list_of(T)) <: (ΛT. list_of(T))", true, list_of_int_from_apply, {:type_apply, gen_list_lambda, [:any]} ) # Identity function: ID = ΛT. T id_lambda = {:type_lambda, [:T], {:type_var, :T}} id_applied_to_atom = {:type_apply, id_lambda, [:atom]} # Normalizes to :atom test_equivalent_tdd("(ΛT.T) TDD == :atom TDD", id_applied_to_atom, :atom) # --- Section: Error Handling in Compiler --- IO.puts("\n--- Section: Error Handling in Compiler ---") test_raise_compile( "Compiling a raw :type_lambda errors", RuntimeError, ~r/Cannot compile :type_lambda directly/, {:type_lambda, [:T], {:type_var, :T}} # This is already normalized ) # TypeSpec.normalize will leave this as is if F is free. test_raise_compile( "Compiling an unreduced :type_apply (with free constructor var) errors", RuntimeError, ~r/Cannot compile :type_apply directly/, {:type_apply, {:type_var, :F}, [:integer]} ) # An unbound type variable not bound by any mu # Normalization will keep {:type_var, :Unbound} as is if it's free. # The error should come from `compile_normalized_spec` for the `{:type_var, name}` case. test_raise_compile( "Compiling an unbound :type_var errors", RuntimeError, ~r/Unbound type variable/, {:type_var, :SomeUnboundVar} ) # A :type_var that is bound by a mu, but the mu is inside a lambda that isn't applied. # e.g. ΛT. (μX. X) -- this is fine to normalize. Compiling it is an error. spec_lambda_mu_var = {:type_lambda, [:T], {:mu, :X, {:type_var, :X}}} test_raise_compile( "Compiling lambda containing mu (still a lambda) errors", RuntimeError, ~r/Cannot compile :type_lambda directly/, spec_lambda_mu_var ) # Final Report failures = Process.get(:test_failures, []) if failures == [] do IO.puts("\n✅ All Tdd.Compiler Advanced Feature tests passed!") else IO.puts("\n❌ Found #{length(failures)} Tdd.Compiler Advanced Feature test failures:") Enum.each(Enum.reverse(failures), &IO.puts(" - #{&1}")) end length(failures) == 0 end end Process.sleep(100) TypeSpecTests.run() TddStoreTests.run() TddVariableTests.run() TddAlgoTests.run() ConsistencyEngineTests.run() TypeReconstructorTests.run() CompilerAlgoTests.run() # TddCompilerRecursiveTests.run() Tdd.TypeSpecAdvancedTests.run() Tdd.CompilerAdvancedTests.run() # Tdd.Compiler.is_subtype( # {:list_of, {:literal, 1}}, # {:list_of, :integer} # ) # |> IO.inspect(label: "TEST RESULT") # # Tdd.Compiler.spec_to_id( {:list_of, {:literal, 1}}) # |> IO.inspect(label: "list of 1 ") # |> Tdd.Debug.print_tdd_graph() # # # Tdd.Compiler.spec_to_id( # {:list_of, :integer} # ) # |> IO.inspect(label: "list of int ") # |> Tdd.Debug.print_tdd_graph()