defmodule Tilly.X.Type do @moduledoc """ Core type system definitions for Tilly — a Lisp that transpiles to Elixir, using set-theoretic types represented as Ternary Decision Diagrams (TDDs). Supports: - Set-theoretic types (union, intersection, negation) - Structural polymorphism with `forall` - Type constraints (e.g., Enumerable(~a)) - Structural map types """ # === Monotype TDD Representation === defmodule TDD do @moduledoc """ Represents a ternary decision diagram node for types. """ defstruct [:decision, :yes, :no, :maybe] @type t :: %__MODULE__{ decision: Tilly.Type.Decision.t(), yes: TDD.t() | :any | :none, no: TDD.t() | :any | :none, maybe: TDD.t() | :any | :none } end # === Type Variable === defmodule Var do @moduledoc """ Represents a type variable in a polymorphic type. """ defstruct [:name, constraints: []] @type t :: %__MODULE__{ name: String.t(), constraints: [Tilly.Type.Constraint.t()] } end # === Structural Map Type === defmodule TDDMap do @moduledoc """ Structural representation of a map type, with per-key typing and optional openness. """ defstruct fields: [], rest: nil @type t :: %__MODULE__{ fields: [{TDD.t(), TDD.t()}], rest: TDD.t() | nil } end @doc """ Checks if t1 is a subtype of t2 under the current substitution. t1 <: t2 iff t1 & (not t2) == None """ def is_subtype(raw_t1, raw_t2, sub) do # Use the apply_sub we defined/refined previously t1 = tdd_substitute(raw_t1, sub) t2 = tdd_substitute(raw_t2, sub) # Handle edge cases with Any and None for robustness cond do # None is a subtype of everything t1 == tdd_none() -> true # Everything is a subtype of Any t2 == tdd_any() -> true # Any is not a subtype of a specific type (unless that type is also Any) t1 == tdd_any() and t2 != tdd_any() -> false # A non-None type cannot be a subtype of None t2 == tdd_none() and t1 != tdd_none() -> false true -> # The core set-theoretic check: t1 \ t2 == None tdd_diff(t1, t2) == tdd_none() # Alternatively: Type.tdd_and(t1, t2) == t1 (but this can be tricky with complex TDDs if not canonical) # The difference check is generally more direct for subtyping. end end # === Type Decisions (Predicates) === defmodule Decision do @moduledoc """ A type-level decision predicate used in a TDD node. """ @type t :: :is_atom | :is_integer | :is_float | :is_binary | :is_list | :is_tuple | :is_map | :is_function | :is_pid | :is_reference | {:literal, term()} | {:tuple_len, pos_integer()} | {:key, TDD.t()} | {:has_struct_key, atom()} | {:var, String.t()} end # === Type Constraints (structural predicates) === defmodule Constraint do @moduledoc """ Represents a structural constraint on a type variable, similar to a typeclass in Haskell or trait in Rust, but structural. """ defstruct [:kind, :arg] @type kind :: :enumerable | :collectable | :struct_with_keys | :custom @type t :: %__MODULE__{ kind: kind(), arg: String.t() | TDD.t() | any() } end # === Polymorphic Types (forall + constraints) === defmodule PolyTDD do @moduledoc """ Represents a polymorphic type with optional structural constraints. """ defstruct [:vars, :body] @type t :: %__MODULE__{ vars: [Var.t()], body: TDD.t() } end # === Constants for base types === @doc "A TDD representing the universal type (any value)" def tdd_any, do: :any @doc "A TDD representing the empty type (no values)" def tdd_none, do: :none @doc "Creates a TDD for a literal value" def tdd_literal(value) do %TDD{ decision: {:literal, value}, yes: :any, no: :none, maybe: :none } end @doc "Creates a TDD for a base predicate (e.g., is_atom)" def tdd_pred(pred) when is_atom(pred) do %TDD{ decision: pred, yes: :any, no: :none, maybe: :none } end @doc "Creates a TDD for a type variable reference" def tdd_var(name) when is_binary(name) do %TDD{ decision: {:var, name}, yes: :any, no: :none, maybe: :none } end @doc """ Performs type variable substitution in a TDD, replacing variables found in the given `env` map. """ def tdd_substitute(:any, _env), do: :any def tdd_substitute(:none, _env), do: :none def tdd_substitute(%TDD{decision: {:var, name}}, env) when is_map(env) do Map.get(env, name, %TDD{decision: {:var, name}, yes: :any, no: :none, maybe: :none}) end def tdd_substitute(%TDD{} = tdd, env) do %TDD{ decision: tdd.decision, yes: tdd_substitute(tdd.yes, env), no: tdd_substitute(tdd.no, env), maybe: tdd_substitute(tdd.maybe, env) } end @doc """ Performs substitution in a polymorphic type, replacing all vars in `vars` with given TDDs from `env`. """ def poly_substitute(%PolyTDD{vars: vars, body: body}, env) do var_names = Enum.map(vars, & &1.name) restricted_env = Map.take(env, var_names) tdd_substitute(body, restricted_env) end # === Constraints === @doc """ Checks whether a TDD satisfies a built-in structural constraint, such as Enumerable or String.Chars. """ def satisfies_constraint?(tdd, %Constraint{kind: :enumerable}) do tdd_is_of_kind?(tdd, [:list, :map, :bitstring]) end def satisfies_constraint?(tdd, %Constraint{kind: :string_chars}) do tdd_is_of_kind?(tdd, [:bitstring, :atom]) end def satisfies_constraint?(_tdd, %Constraint{kind: :custom}) do raise "Custom constraints not implemented yet" end # Default fallback: constraint not recognized def satisfies_constraint?(_tdd, %Constraint{kind: kind}) do raise ArgumentError, "Unknown constraint kind: #{inspect(kind)}" end @doc """ Checks if a TDD is semantically a subtype of any of the specified kinds. Used to approximate constraint satisfaction structurally. """ def tdd_is_of_kind?(:any, _), do: true def tdd_is_of_kind?(:none, _), do: false def tdd_is_of_kind?(%TDD{decision: pred} = tdd, kinds) do if pred in kinds do # Decision directly confirms kind tdd.yes != :none else # Otherwise we conservatively say "no" unless the TDD is union-like false end end # === Decision === defmodule Decision do @moduledoc """ A type-level decision predicate used in a TDD node. """ @type t :: :is_atom | :is_integer | :is_float | :is_binary | :is_list | :is_tuple | :is_map # General "is a function" | :is_function | :is_pid | :is_reference | {:literal, term()} | {:tuple_len, pos_integer()} # Type of a map key (used in structural map checks) | {:key, TDD.t()} | {:has_struct_key, atom()} # A type variable name, e.g., "~a" | {:var, String.t()} # New | {:is_function_sig, param_types :: [TDD.t()], return_type :: TDD.t()} end @doc "Creates a TDD for a specific function signature" def tdd_function_sig(param_types, return_type) when is_list(param_types) and (is_struct(return_type, TDD) or return_type in [:any, :none]) do %TDD{ decision: {:is_function_sig, param_types, return_type}, # A value matches if it's a function of this signature yes: :any, no: :none, # Maybe it's some other function maybe: %TDD{decision: :is_function, yes: :any, no: :none, maybe: :none} } end # ... (existing tdd_or, tdd_and, tdd_not, tdd_diff) ... @doc """ Performs type variable substitution in a TDD, replacing variables found in the given `env` map (var_name -> TDD). """ def tdd_substitute(:any, _env), do: :any def tdd_substitute(:none, _env), do: :none def tdd_substitute(%TDD{decision: {:var, name}} = tdd, env) when is_map(env) do # If var 'name' is in env, substitute it. Otherwise, keep the var. Map.get(env, name, tdd) end def tdd_substitute(%TDD{decision: {:is_function_sig, params, ret_type}} = tdd, env) do # Substitute within the signature parts substituted_params = Enum.map(params, &tdd_substitute(&1, env)) substituted_ret_type = tdd_substitute(ret_type, env) # Reconstruct the TDD node, keeping yes/no/maybe branches as they are fixed for this predicate. # Note: If canonicalization (mk_tdd) were used, this would go through it. %TDD{tdd | decision: {:is_function_sig, substituted_params, substituted_ret_type}} end def tdd_substitute(%TDD{decision: {:key, key_type_tdd}} = tdd, env) do # Substitute within the key type TDD substituted_key_type = tdd_substitute(key_type_tdd, env) %TDD{tdd | decision: {:key, substituted_key_type}} end # Generic case for other decisions: substitute in branches def tdd_substitute(%TDD{} = tdd, env) do %TDD{ # Assume decision itself doesn't contain substitutable vars unless handled above decision: tdd.decision, yes: tdd_substitute(tdd.yes, env), no: tdd_substitute(tdd.no, env), maybe: tdd_substitute(tdd.maybe, env) } end @doc """ Performs substitution in a polymorphic type's body, using the provided `env` (var_name -> TDD). This substitutes *free* variables in the PolyTDD's body, not its quantified variables. To instantiate quantified variables, use `Tilly.Inference.instantiate/3`. """ def poly_substitute_free_vars(%PolyTDD{vars: _quantified_vars, body: body} = poly_tdd, env) do # We only substitute variables in the body that are NOT the quantified ones. # `env` should ideally not contain keys that are names of quantified variables of this PolyTDD. # For simplicity, if env has a quantified var name, it will be shadowed by the quantified var itself. # A more robust approach might filter env based on quantified_vars. substituted_body = tdd_substitute(body, env) %PolyTDD{poly_tdd | body: substituted_body} end @doc "Finds all free type variable names in a TDD." def free_vars(:any), do: MapSet.new() def free_vars(:none), do: MapSet.new() def free_vars(%TDD{decision: {:var, name}}) do MapSet.new([name]) end def free_vars(%TDD{decision: {:is_function_sig, params, ret_type}}) do param_fvs = Enum.map(params, &free_vars/1) |> Enum.reduce(MapSet.new(), &MapSet.union/2) ret_fvs = free_vars(ret_type) MapSet.union(param_fvs, ret_fvs) # Note: yes/no/maybe branches for this node are typically :any/:none or simple predicates, # but if they could contain vars, they'd need to be included. # Current tdd_function_sig has fixed branches. end def free_vars(%TDD{decision: {:key, key_type_tdd}}) do free_vars(key_type_tdd) # Similar note about yes/no/maybe branches. end def free_vars(%TDD{yes: yes, no: no, maybe: maybe}) do MapSet.union(free_vars(yes), MapSet.union(free_vars(no), free_vars(maybe))) end # Helper for PolyTDD free vars (vars free in body that are not quantified) def free_vars_in_poly_tdd_body(%PolyTDD{vars: quantified_vars_list, body: body}) do quantified_names = Enum.map(quantified_vars_list, & &1.name) |> MapSet.new() body_fvs = free_vars(body) MapSet.difference(body_fvs, quantified_names) end end defmodule Tilly.Inference do alias Tilly.Type alias Tilly.Type.{TDD, Var, PolyTDD, Constraint} @typedoc "Type environment: maps variable names (atoms) to their types (TDD or PolyTDD)" @type type_env :: %{atom() => TDD.t() | PolyTDD.t()} @typedoc "Substitution map: maps type variable names (strings) to TDDs" @type substitution :: %{String.t() => TDD.t()} @typedoc "Constraints collected during inference: {type_var_name, constraint}" @type collected_constraints :: [{String.t(), Constraint.t()}] @typedoc """ Result of inference for an expression: - inferred_type: The TDD or PolyTDD type of the expression. - var_counter: The updated counter for generating fresh type variables. - substitution: The accumulated substitution map. - constraints: Constraints that need to be satisfied. """ @type infer_result :: {inferred_type :: TDD.t() | PolyTDD.t(), var_counter :: non_neg_integer(), substitution :: substitution(), constraints :: collected_constraints()} # --- Helper for Fresh Type Variables --- defmodule FreshVar do @doc "Generates a new type variable name and increments the counter." @spec next(non_neg_integer()) :: {String.t(), non_neg_integer()} def next(counter) do new_var_name = "~t" <> Integer.to_string(counter) {new_var_name, counter + 1} end end # --- Core Inference Function --- @doc "Infers the type of a Tilly expression." @spec infer( expr :: term(), env :: type_env(), var_counter :: non_neg_integer(), sub :: substitution() ) :: infer_result() def infer({:lit, val}, _env, var_counter, sub) do type = cond do # More precise: Type.tdd_literal(val) is_atom(val) -> Type.tdd_pred(:is_atom) # Type.tdd_literal(val) is_integer(val) -> Type.tdd_pred(:is_integer) # Type.tdd_literal(val) is_float(val) -> Type.tdd_pred(:is_float) # Type.tdd_literal(val) is_binary(val) -> Type.tdd_pred(:is_binary) # Add other literals as needed # Fallback for other kinds of literals true -> Type.tdd_literal(val) end {type, var_counter, sub, []} end def infer({:var, name}, env, var_counter, sub) when is_atom(name) do case Map.get(env, name) do nil -> raise "Unbound variable: #{name}" %TDD{} = tdd_type -> {Type.tdd_substitute(tdd_type, sub), var_counter, sub, []} %PolyTDD{} = poly_type -> {instantiated_type, new_var_counter, new_constraints} = instantiate(poly_type, var_counter) # Apply current substitution to the instantiated type # (in case fresh vars from instantiation are already in sub from elsewhere) final_type = Type.tdd_substitute(instantiated_type, sub) {final_type, new_var_counter, sub, new_constraints} end end def infer({:fn, param_atoms, body_expr}, env, var_counter, sub) when is_list(param_atoms) do # 1. Create fresh type variables for parameters {param_tdd_vars, extended_env, counter_after_params} = Enum.reduce(param_atoms, {[], env, var_counter}, fn param_name, {vars_acc, env_acc, c_acc} -> {fresh_var_name, next_c} = FreshVar.next(c_acc) param_tdd_var = Type.tdd_var(fresh_var_name) {[param_tdd_var | vars_acc], Map.put(env_acc, param_name, param_tdd_var), next_c} end) param_types = Enum.reverse(param_tdd_vars) # 2. Infer body with extended environment and current substitution {body_type_raw, counter_after_body, sub_after_body, body_constraints} = infer(body_expr, extended_env, counter_after_params, sub) # 3. Apply the substitution from body inference to parameter types # This is because unification within the body might refine what the param types can be. final_param_types = Enum.map(param_types, &Type.tdd_substitute(&1, sub_after_body)) # Already applied in infer usually final_body_type = Type.tdd_substitute(body_type_raw, sub_after_body) # 4. Construct function type fun_type = Type.tdd_function_sig(final_param_types, final_body_type) {fun_type, counter_after_body, sub_after_body, body_constraints} end def infer({:app, fun_expr, arg_exprs}, env, var_counter, sub) when is_list(arg_exprs) do # 1. Infer function expression {fun_type_raw, c1, s1, fun_constraints} = infer(fun_expr, env, var_counter, sub) # Apply substitutions so far fun_type_template = Type.tdd_substitute(fun_type_raw, s1) # 2. Infer argument expressions {arg_types_raw, c2, s2, args_constraints_lists} = Enum.map_reduce(arg_exprs, {c1, s1}, fn arg_expr, {c_acc, s_acc} -> {arg_t, next_c, next_s, arg_c} = infer(arg_expr, env, c_acc, s_acc) # Pass along type and its constraints {{arg_t, arg_c}, {next_c, next_s}} end) actual_arg_types = Enum.map(arg_types_raw, fn {t, _cs} -> Type.tdd_substitute(t, s2) end) all_arg_constraints = Enum.flat_map(arg_types_raw, fn {_t, cs} -> cs end) ++ fun_constraints # 3. Unify/Match function type with arguments # `fun_type_template` is the type of the function (e.g., {:var, "~f"} or an actual fn_sig) # `s2` is the current global substitution. {return_type_final, c3, s3, unification_constraints} = unify_apply(fun_type_template, actual_arg_types, c2, s2) {return_type_final, c3, s3, all_arg_constraints ++ unification_constraints} end def infer({:let, [{var_name, val_expr}], body_expr}, env, var_counter, sub) do # 1. Infer the type of the value expression {val_type_raw, c1, s1, val_constraints} = infer(val_expr, env, var_counter, sub) # 2. Apply current substitution and generalize the value's type # Generalization happens *before* adding to env, over variables free in val_type but not env. # The substitution `s1` contains all refinements up to this point. val_type_substituted = Type.tdd_substitute(val_type_raw, s1) generalized_val_type = generalize(val_type_substituted, env, s1) # 3. Extend environment and infer body extended_env = Map.put(env, var_name, generalized_val_type) # Use s1 for body too {body_type_raw, c2, s2, body_constraints} = infer(body_expr, extended_env, c1, s1) # The final substitution s2 incorporates s1 and any changes from body. # The final body_type is already substituted by s2. {body_type_raw, c2, s2, val_constraints ++ body_constraints} end # --- Polymorphism: Instantiation and Generalization --- @doc "Instantiates a polymorphic type scheme by replacing quantified variables with fresh ones." def instantiate(%PolyTDD{vars: poly_vars_list, body: body_tdd}, var_counter) do # Create substitution map from quantified vars to fresh vars {substitution_to_fresh, new_var_counter, new_constraints} = Enum.reduce(poly_vars_list, {%{}, var_counter, []}, fn %Var{ name: q_name, constraints: q_constraints }, {sub_acc, c_acc, cons_acc} -> {fresh_name, next_c} = FreshVar.next(c_acc) fresh_tdd_var = Type.tdd_var(fresh_name) # Associate constraints of the quantified var with the new fresh var # Tie constraint to fresh var name fresh_var_constraints = Enum.map(q_constraints, &%Constraint{&1 | arg: fresh_name}) {Map.put(sub_acc, q_name, fresh_tdd_var), next_c, cons_acc ++ fresh_var_constraints} end) instantiated_body = Type.tdd_substitute(body_tdd, substitution_to_fresh) {instantiated_body, new_var_counter, new_constraints} end @doc "Generalizes a TDD type into a PolyTDD if it has free variables not in the environment." def generalize(type_tdd, env, current_sub) do # Apply current substitution to resolve any vars in type_tdd that are already determined type_to_generalize = Type.tdd_substitute(type_tdd, current_sub) env_free_vars = env |> Map.values() |> Enum.map(&apply_sub_and_get_free_vars(&1, current_sub)) |> Enum.reduce(MapSet.new(), &MapSet.union/2) type_free_vars_set = Type.free_vars(type_to_generalize) vars_to_quantify_names = MapSet.difference(type_free_vars_set, env_free_vars) if MapSet.size(vars_to_quantify_names) == 0 do # No variables to quantify, return as is type_to_generalize else quantified_vars_structs = Enum.map(MapSet.to_list(vars_to_quantify_names), fn var_name -> # For now, generalized variables have no attached constraints here. # Constraints arise from usage and are checked later. %Var{name: var_name, constraints: []} end) %PolyTDD{vars: quantified_vars_structs, body: type_to_generalize} end end defp apply_sub_and_get_free_vars(%TDD{} = tdd, sub) do Type.tdd_substitute(tdd, sub) |> Type.free_vars() end defp apply_sub_and_get_free_vars(%PolyTDD{} = poly_tdd, sub) do # For a PolyTDD in the env, we care about its free variables *after* substitution, # excluding its own quantified variables. # Substitutes free vars in body Type.poly_substitute_free_vars(poly_tdd, sub) |> Type.free_vars_in_poly_tdd_body() end # --- Unification (Simplified for now) --- @doc """ Constrains variables in t1 and t2 to be compatible and updates the substitution. If t1 is Var(~a) and t2 is Type T, then ~a's bound becomes current_bound(~a) & T. If t1 and t2 are concrete, checks their intersection isn't None. Returns new substitution. Throws on error. """ def constrain_and_update_sub(raw_t1, raw_t2, sub) do # IO.inspect({:constrain_start, raw_t1, raw_t2, sub}, label: "CONSTRAIN") t1 = tdd_substitute(raw_t1, sub) t2 = tdd_substitute(raw_t2, sub) # IO.inspect({:constrain_applied, t1, t2}, label: "CONSTRAIN") cond do # Identical or one is Any (Any & T = T, so effectively no new constraint on T if T is a var already refined from Any) t1 == t2 -> sub # Effectively constrains t2 if it's a var t1 == Type.tdd_any() -> constrain_var_with_type(t2, t1, sub) # Effectively constrains t1 if it's a var t2 == Type.tdd_any() -> constrain_var_with_type(t1, t2, sub) # Case 1: t1 is a variable %TDD{decision: {:var, v_name1}} = t1 -> update_var_bound(v_name1, t2, sub, raw_t1, raw_t2) # Case 2: t2 is a variable (and t1 is not) %TDD{decision: {:var, v_name2}} = t2 -> # Note order for error message update_var_bound(v_name2, t1, sub, raw_t2, raw_t1) # Case 3: Both are function signatures (concrete) %TDD{decision: {:is_function_sig, params1, ret1}} = t1, %TDD{decision: {:is_function_sig, params2, ret2}} = t2 -> if length(params1) != length(params2) do raise "Type error (constrain): Function arity mismatch between #{inspect(t1)} and #{inspect(t2)}" end # For two function *types* to be compatible/substitutable, their parameters are contravariant, return is covariant. # However, if we are "unifying" them to be *the same type structure*, then params are covariant. # Let's assume for now `constrain_and_update_sub` implies they should be "equal or compatible via intersection". # This means their intersection should be non-None, and vars within them get constrained. sub_after_params = Enum.zip(params1, params2) |> Enum.reduce(sub, fn {p1, p2}, acc_sub -> # Params are "unified" directly constrain_and_update_sub(p1, p2, acc_sub) end) # Return types are "unified" directly constrain_and_update_sub(ret1, ret2, sub_after_params) # TODO: Add cases for Tuples, Lists, TDDMap # For tuples: length must match, then constrain_and_update_sub elements pairwise. # %TDD{decision: {:is_tuple, len1}, yes: elements_tdd1} ... # This requires TDDs to encode tuple elements more directly if we want to unify structurally. # Current TDD for tuple is just {:tuple_len, N} or general :is_tuple. We need richer TDDs for structural unification. # For now, this fallback will handle simple tuple predicates. # Case 4: Other concrete types. true -> intersection = tdd_and(t1, t2) if intersection == Type.tdd_none() do raise "Type error (constrain): Types #{inspect(t1)} (from #{inspect(raw_t1)}) and #{inspect(t2)} (from #{inspect(raw_t2)}) are incompatible (intersection is empty). Current sub: #{inspect(sub)}" end # If they are concrete and compatible, `sub` is unchanged at this level. sub end defp constrain_var_with_type(%TDD{decision: {:var, v_name}} = var_tdd, other_type, sub) do # raw_t1, raw_t2 are for error msg context update_var_bound(v_name, other_type, sub, var_tdd, other_type) end # No var, no sub change here defp constrain_var_with_type(_concrete_type, _other_type, sub), do: sub defp update_var_bound(v_name, constraining_type, sub, raw_var_form, raw_constraining_form) do # Default to Any current_bound_v = Map.get(sub, v_name, Type.tdd_any()) new_bound_v = Type.tdd_and(current_bound_v, constraining_type) if new_bound_v == Type.tdd_none() do original_var_constraint_str = if raw_var_form != constraining_type, do: "(from unifying with #{inspect(raw_constraining_form)})", else: "" raise "Type error: Constraining variable #{v_name} with #{inspect(constraining_type)} #{original_var_constraint_str} results in an empty type. Previous bound: #{inspect(current_bound_v)}. Current sub: #{inspect(sub)}" end Map.put(sub, v_name, new_bound_v) end @doc """ Handles the application of a function type to actual argument types. `fun_type_template` is the (possibly variable) type of the function. `actual_arg_types` are the TDDs of the arguments. `var_counter` and `sub` are current state. Returns `{final_return_type, new_counter, new_sub, new_constraints}`. """ def unify_apply(fun_type_template, actual_arg_types, var_counter, sub) do # Apply current substitutions to fun_type_template current_fun_type = Type.tdd_substitute(fun_type_template, sub) case current_fun_type do %TDD{decision: {:var, fun_var_name}} -> # Function is a type variable. We need to unify it with a newly minted function signature. {param_var_tds, c1} = Enum.map_reduce(actual_arg_types, var_counter, fn _arg, c_acc -> {fresh_name, next_c} = FreshVar.next(c_acc) {Type.tdd_var(fresh_name), next_c} end) {return_var_name, c2} = FreshVar.next(c1) return_var_tdd = Type.tdd_var(return_var_name) # The new signature that fun_var_name must conform to synthetic_fun_sig_tdd = Type.tdd_function_sig(param_var_tds, return_var_tdd) # Unify the function variable with this synthetic signature {s1, cons1} = unify(current_fun_type, synthetic_fun_sig_tdd, sub) # Now unify actual arguments with the fresh parameter type variables {s2, cons2_list} = Enum.zip(actual_arg_types, param_var_tds) |> Enum.reduce({s1, []}, fn {actual_arg_t, param_var_t}, {s_acc, c_acc_list} -> {next_s, next_cs} = unify(actual_arg_t, param_var_t, s_acc) {next_s, [next_cs | c_acc_list]} end) final_return_type = Type.tdd_substitute(return_var_tdd, s2) {final_return_type, c2, s2, cons1 ++ List.flatten(cons2_list)} %TDD{decision: {:is_function_sig, expected_param_types, expected_return_type}} -> # Function is a known signature. if length(actual_arg_types) != length(expected_param_types) do raise "Arity mismatch: expected #{length(expected_param_types)}, got #{length(actual_arg_types)}" end # Unify actual arguments with expected parameter types {s1, constraints_from_params_list} = Enum.zip(actual_arg_types, expected_param_types) |> Enum.reduce({sub, []}, fn {actual_arg_t, expected_param_t}, {s_acc, c_acc_list} -> {next_s, param_cs} = unify(actual_arg_t, expected_param_t, s_acc) {next_s, [param_cs | c_acc_list]} end) final_return_type = Type.tdd_substitute(expected_return_type, s1) {final_return_type, var_counter, s1, List.flatten(constraints_from_params_list)} other_type -> raise "Type error: expected a function, but got #{inspect(other_type)}" end end @doc "Top-level type checking function for a Tilly program (list of expressions)." def typecheck_program(exprs, initial_env \\ %{}) do # For a program, we can infer each top-level expression. # For `def`s, they would add to the environment. # For now, let's just infer a single expression. # A real program would involve modules, defs, etc. initial_var_counter = 0 initial_substitution = %{} # This is a simplified entry point, inferring a single expression # A full program checker would iterate, manage top-level defs, etc. if is_list(exprs) and Enum.count(exprs) == 1 do [main_expr] = exprs {raw_type, _counter, final_sub, constraints} = infer(main_expr, initial_env, initial_var_counter, initial_substitution) final_type = Type.tdd_substitute(raw_type, final_sub) # Here, you would solve/check `constraints` using `final_sub` # For example: Enum.each(constraints, fn {var_name, constraint_obj} -> var_final_type = Map.get(final_sub, var_name, Type.tdd_var(var_name)) unless Type.satisfies_constraint?(var_final_type, constraint_obj) do raise "Constraint #{inspect(constraint_obj)} not satisfied for #{var_name} (type #{inspect(var_final_type)})" end end) {:ok, final_type, final_sub} else # Placeholder for multi-expression program handling {:error, "Program must be a single expression for now"} end end end end