checkpoint before next attempt at recursive types - noice debugging here

This commit is contained in:
Kacper Marzecki 2025-06-19 01:49:08 +02:00
parent ff557cb221
commit bcddae26cb

245
new.exs
View File

@ -575,7 +575,6 @@ defmodule Tdd.Variable do
# @spec v_list_all_elements_are(TypeSpec.t()) :: term()
# def v_list_all_elements_are(element_spec), do: {5, :a_all_elements, element_spec, nil}
@doc "Predicate: The list is the empty list `[]`."
@spec v_list_is_empty() :: term()
def v_list_is_empty, do: {5, :b_is_empty, nil, nil}
@ -1369,7 +1368,6 @@ defmodule Tdd.Compiler do
@doc "The main entry point. Takes a spec and returns its TDD ID."
@spec spec_to_id(TypeSpec.t()) :: non_neg_integer()
def spec_to_id(spec) do
# Memoization wrapper for the entire compilation process.
normalized_spec = TypeSpec.normalize(spec)
cache_key = {:spec_to_id, normalized_spec}
@ -1378,76 +1376,44 @@ defmodule Tdd.Compiler do
id
:not_found ->
id = do_spec_to_id(normalized_spec)
# Do the raw compilation first.
raw_id = do_spec_to_id(normalized_spec)
# THEN, do a final semantic simplification pass. This is the fix.
id = Algo.simplify(raw_id)
Store.put_op_cache(cache_key, id)
id
end
end
# The core compilation logic.
# This helper does the raw, structural compilation. It does NOT call simplify.
defp do_spec_to_id(spec) do
raw_id =
case spec do
# --- Base Types ---
:any ->
Store.true_node_id()
:any -> Store.true_node_id()
:none -> Store.false_node_id()
:atom -> create_base_type_tdd(Variable.v_is_atom())
:integer -> create_base_type_tdd(Variable.v_is_integer())
:list -> create_base_type_tdd(Variable.v_is_list())
:tuple -> create_base_type_tdd(Variable.v_is_tuple())
{:literal, val} when is_atom(val) -> compile_value_equality(:atom, Variable.v_atom_eq(val))
{:literal, val} when is_integer(val) -> compile_value_equality(:integer, Variable.v_int_eq(val))
{:literal, []} -> compile_value_equality(:list, Variable.v_list_is_empty())
{:integer_range, min, max} -> compile_integer_range(min, max)
:none ->
Store.false_node_id()
:atom ->
create_base_type_tdd(Variable.v_is_atom())
:integer ->
create_base_type_tdd(Variable.v_is_integer())
:list ->
create_base_type_tdd(Variable.v_is_list())
:tuple ->
create_base_type_tdd(Variable.v_is_tuple())
# --- Literal Types ---
{:literal, val} when is_atom(val) ->
compile_value_equality(:atom, Variable.v_atom_eq(val))
{:literal, val} when is_integer(val) ->
compile_value_equality(:integer, Variable.v_int_eq(val))
{:literal, []} ->
compile_value_equality(:list, Variable.v_list_is_empty())
# --- Integer Range ---
{:integer_range, min, max} ->
compile_integer_range(min, max)
# --- Set-Theoretic Combinators ---
{:union, specs} ->
ids = Enum.map(specs, &spec_to_id/1)
Enum.reduce(ids, Store.false_node_id(), fn id, acc ->
Enum.map(specs, &spec_to_id/1)
|> Enum.reduce(Store.false_node_id(), fn id, acc ->
Algo.apply(:sum, &op_union_terminals/2, id, acc)
end)
{:intersect, specs} ->
ids = Enum.map(specs, &spec_to_id/1)
Enum.reduce(ids, Store.true_node_id(), fn id, acc ->
Enum.map(specs, &spec_to_id/1)
|> Enum.reduce(Store.true_node_id(), fn id, acc ->
Algo.apply(:intersect, &op_intersect_terminals/2, id, acc)
end)
{:negation, sub_spec} ->
Algo.negate(spec_to_id(sub_spec))
# --- RECURSIVE TYPES ---
#
# {:list_of, element_spec} ->
# id_list = spec_to_id(:list)
# # The element_spec MUST be normalized to be a canonical part of the variable.
norm_elem_spec = TypeSpec.normalize(element_spec)
var = Variable.v_list_all_elements_are(norm_elem_spec)
# id_check = create_base_type_tdd(var)
# Algo.apply(:intersect, &op_intersect_terminals/2, id_list, id_check)
{:cons, head_spec, tail_spec} ->
id_head = spec_to_id(head_spec)
id_tail = spec_to_id(tail_spec)
@ -1456,47 +1422,30 @@ defmodule Tdd.Compiler do
{:tuple, elements} ->
compile_tuple(elements)
{:list_of, element_spec} ->
compile_list_of(element_spec)
# --- Default ---
_ ->
raise "Tdd.Compiler: Cannot compile unknown spec: #{inspect(spec)}"
end
# CRUCIAL: Every constructed TDD must be passed through simplify
# to ensure it's in its canonical, semantically-reduced form.
Algo.simplify(raw_id)
end
# ------------------------------------------------------------------
# Private Compilation Helpers
# ------------------------------------------------------------------
# --- Private Helpers ---
defp create_base_type_tdd(var) do
Store.find_or_create_node(
var,
Store.true_node_id(),
Store.false_node_id(),
Store.false_node_id()
)
end
defp create_base_type_tdd(var), do: Store.find_or_create_node(var, Store.true_node_id(), Store.false_node_id(), Store.false_node_id())
defp compile_value_equality(base_type_spec, value_var) do
eq_node = create_base_type_tdd(value_var)
# Note: spec_to_id is safe here because it's on non-recursive base types.
base_node_id = spec_to_id(base_type_spec)
Algo.apply(:intersect, &op_intersect_terminals/2, base_node_id, eq_node)
end
defp compile_integer_range(min, max) do
base_id = spec_to_id(:integer)
id_with_min =
if min == :neg_inf do
base_id
else
lt_min_tdd = create_base_type_tdd(Variable.v_int_lt(min))
gte_min_tdd = Algo.negate(lt_min_tdd)
Algo.apply(:intersect, &op_intersect_terminals/2, base_id, gte_min_tdd)
end
lt_min_tdd = if min != :neg_inf, do: create_base_type_tdd(Variable.v_int_lt(min))
gte_min_tdd = if lt_min_tdd, do: Algo.negate(lt_min_tdd), else: spec_to_id(:any)
id_with_min = Algo.apply(:intersect, &op_intersect_terminals/2, base_id, gte_min_tdd)
if max == :pos_inf do
id_with_min
@ -1506,49 +1455,18 @@ defmodule Tdd.Compiler do
end
end
# ------------------------------------------------------------------
# Helpers for Compositional Recursive Types (`cons`, `tuple`)
# ------------------------------------------------------------------
defp sub_problem(sub_key_constructor, tdd_id) do
cache_key = {:sub_problem, sub_key_constructor, tdd_id}
case Store.get_op_cache(cache_key) do
{:ok, result_id} ->
result_id
:not_found ->
result_id = do_sub_problem(sub_key_constructor, tdd_id)
Store.put_op_cache(cache_key, result_id)
result_id
end
end
defp do_sub_problem(sub_key_constructor, tdd_id) do
case Store.get_node(tdd_id) do
{:ok, :true_terminal} ->
Store.true_node_id()
{:ok, :false_terminal} ->
Store.false_node_id()
{:ok, {var, y, n, d}} ->
lifted_var = sub_key_constructor.(var)
lifted_y = sub_problem(sub_key_constructor, y)
lifted_n = sub_problem(sub_key_constructor, n)
lifted_d = sub_problem(sub_key_constructor, d)
Store.find_or_create_node(lifted_var, lifted_y, lifted_n, lifted_d)
end
end
defp compile_cons_from_ids(h_id, t_id) do
non_empty_list_id = spec_to_id({:intersect, [:list, {:negation, {:literal, []}}]})
# Build `list & !is_empty` manually and safely.
id_list = create_base_type_tdd(Variable.v_is_list())
id_is_empty = create_base_type_tdd(Variable.v_list_is_empty())
id_not_is_empty = Algo.negate(id_is_empty)
non_empty_list_id = Algo.apply(:intersect, &op_intersect_terminals/2, id_list, id_not_is_empty)
head_checker = sub_problem(&Variable.v_list_head_pred/1, h_id)
tail_checker = sub_problem(&Variable.v_list_tail_pred/1, t_id)
ids_to_intersect = [non_empty_list_id, head_checker, tail_checker]
Enum.reduce(ids_to_intersect, Store.true_node_id(), fn id, acc ->
[non_empty_list_id, head_checker, tail_checker]
|> Enum.reduce(Store.true_node_id(), fn id, acc ->
Algo.apply(:intersect, &op_intersect_terminals/2, id, acc)
end)
end
@ -1569,19 +1487,38 @@ defmodule Tdd.Compiler do
end)
end
# ------------------------------------------------------------------
# Helper for Self-Recursive Types (`list_of`) via Fixed-Point Iteration
# ------------------------------------------------------------------
defp sub_problem(sub_key_constructor, tdd_id) do
cache_key = {:sub_problem, sub_key_constructor, tdd_id}
case Store.get_op_cache(cache_key) do
{:ok, result_id} -> result_id
:not_found ->
result_id = do_sub_problem(sub_key_constructor, tdd_id)
Store.put_op_cache(cache_key, result_id)
result_id
end
end
defp do_sub_problem(sub_key_constructor, tdd_id) do
case Store.get_node(tdd_id) do
{:ok, :true_terminal} -> Store.true_node_id()
{:ok, :false_terminal} -> Store.false_node_id()
{:ok, {var, y, n, d}} ->
Store.find_or_create_node(
sub_key_constructor.(var),
sub_problem(sub_key_constructor, y),
sub_problem(sub_key_constructor, n),
sub_problem(sub_key_constructor, d)
)
end
end
defp compile_list_of(element_spec) do
cache_key = {:compile_list_of, element_spec}
norm_elem_spec = TypeSpec.normalize(element_spec)
cache_key = {:compile_list_of, norm_elem_spec}
case Store.get_op_cache(cache_key) do
{:ok, id} ->
id
{:ok, id} -> id
:not_found ->
id = do_compile_list_of(element_spec)
id = do_compile_list_of(norm_elem_spec)
Store.put_op_cache(cache_key, id)
id
end
@ -1590,50 +1527,50 @@ defmodule Tdd.Compiler do
defp do_compile_list_of(element_spec) do
id_elem = spec_to_id(element_spec)
id_empty_list = spec_to_id({:literal, []})
step_function = fn id_x ->
id_cons = compile_cons_from_ids(id_elem, id_x)
Algo.apply(:sum, &op_union_terminals/2, id_empty_list, id_cons)
end
loop_until_stable(Store.false_node_id(), step_function)
end
# --- THIS IS THE FIX ---
defp loop_until_stable(prev_id, step_function) do
# At each step, we must simplify the result to get its canonical form.
# This ensures we are comparing semantic equality, not just structural.
# THIS IS THE FINAL, CORRECTED LOOP
defp loop_until_stable(prev_id, step_function, iteration \\ 0) do
IO.puts("\n--- Fixed-Point Iteration: #{iteration} ---")
IO.inspect(prev_id, label: "prev_id")
# Tdd.Debug.print(prev_id) # Optional: uncomment for full graph
raw_next_id = step_function.(prev_id)
IO.inspect(raw_next_id, label: "raw_next_id (after step_function)")
Tdd.Debug.print(raw_next_id) # Let's see the raw graph
# Crucially, simplify after each step for canonical comparison.
next_id = Algo.simplify(raw_next_id)
IO.inspect(next_id, label: "next_id (after simplify)")
Tdd.Debug.print(next_id) # Let's see the simplified graph
if next_id == prev_id do
IO.puts("--- Fixed-Point Reached! ---")
next_id
else
loop_until_stable(next_id, step_function)
# Add a safety break for debugging
if iteration > 2 do
IO.inspect Process.info(self(), :current_stacktrace)
raise "Fixed-point iteration did not converge after 2 steps. Halting."
end
loop_until_stable(next_id, step_function, iteration + 1)
end
end
# ------------------------------------------------------------------
# Private Functions for Terminal Logic
# ------------------------------------------------------------------
defp op_union_terminals(u1_details, u2_details) do
case {u1_details, u2_details} do
{:true_terminal, _} -> :true_terminal
{_, :true_terminal} -> :true_terminal
{:false_terminal, t2} -> t2
{t1, :false_terminal} -> t1
end
end
defp op_intersect_terminals(u1_details, u2_details) do
case {u1_details, u2_details} do
{:false_terminal, _} -> :false_terminal
{_, :false_terminal} -> :false_terminal
{:true_terminal, t2} -> t2
{t1, :true_terminal} -> t1
end
end
# --- Private Functions for Terminal Logic ---
defp op_union_terminals(:true_terminal, _), do: :true_terminal
defp op_union_terminals(_, :true_terminal), do: :true_terminal
defp op_union_terminals(t, :false_terminal), do: t
defp op_union_terminals(:false_terminal, t), do: t
defp op_intersect_terminals(:false_terminal, _), do: :false_terminal
defp op_intersect_terminals(_, :false_terminal), do: :false_terminal
defp op_intersect_terminals(t, :true_terminal), do: t
defp op_intersect_terminals(:true_terminal, t), do: t
end
####