some progress with recursive checks

This commit is contained in:
Kacper Marzecki 2025-06-19 02:34:34 +02:00
parent bcddae26cb
commit 658332ace1

347
new.exs
View File

@ -517,6 +517,57 @@ defmodule Tdd.Store do
Process.put(@op_cache_key, Map.put(cache, cache_key, result))
:ok
end
@doc """
Creates a unique, temporary placeholder node for a recursive spec.
Returns the ID of this placeholder.
"""
@spec create_placeholder(TypeSpec.t()) :: non_neg_integer()
def create_placeholder(spec) do
# The variable is a unique tuple that won't conflict with real predicates.
# The children are meaningless (-1) as they will be replaced.
find_or_create_node({:placeholder, spec}, -1, -1, -1)
end
@doc """
Updates a node's details directly. This is a special-purpose, mutable-style
operation used exclusively by the compiler to "tie the knot" for recursive types.
It updates both the forward and reverse lookup tables.
"""
@spec update_node_in_place(
non_neg_integer(),
new_details ::
{:ok,
{term(), non_neg_integer(), non_neg_integer(), non_neg_integer()}
| :true_terminal
| :false_terminal}
) :: :ok
def update_node_in_place(id, {:ok, new_details}) do
# Get current state
nodes = Process.get(@nodes_key)
node_by_id = Process.get(@node_by_id_key)
# 1. Find and remove the old reverse mapping from the `nodes` table.
# The node at `id` is a placeholder, so its details are what we created above.
old_details = Map.get(node_by_id, id)
nodes = Map.delete(nodes, old_details)
# 2. Add the new reverse mapping to the `nodes` table.
# But only if the new details correspond to a non-terminal node.
nodes =
case new_details do
{_v, _y, _n, _d} -> Map.put(nodes, new_details, id)
_ -> nodes
end
# 3. Update the main `node_by_id` table.
node_by_id = Map.put(node_by_id, id, new_details)
# 4. Save the updated tables.
Process.put(@nodes_key, nodes)
Process.put(@node_by_id_key, node_by_id)
:ok
end
end
defmodule Tdd.Variable do
@ -1097,10 +1148,9 @@ defmodule Tdd.Algo do
current_state = {tdd_id, sorted_assumptions}
# Coinductive base case: if we have seen this exact state before in this
# call stack, we are in a loop. For a least-fixed-point type (like list_of),
# this represents an un-satisfiable recursive constraint, which is `none`.
# call stack, we are in a loop.
if MapSet.member?(context, current_state) do
Store.false_node_id()
Store.true_node_id()
else
new_context = MapSet.put(context, current_state)
assumptions = Map.new(sorted_assumptions)
@ -1169,7 +1219,50 @@ defmodule Tdd.Algo do
end
end
end
@doc """
Recursively traverses a TDD graph from `root_id`, creating a new graph
where all references to `from_id` are replaced with `to_id`.
This is a pure function used to "tie the knot" in recursive type compilation.
"""
@spec substitute(root_id :: non_neg_integer(), from_id :: non_neg_integer(), to_id :: non_neg_integer()) ::
non_neg_integer()
def substitute(root_id, from_id, to_id) do
# Handle the trivial case where the root is the node to be replaced.
if root_id == from_id, do: to_id, else: do_substitute(root_id, from_id, to_id)
end
# The private helper uses memoization to avoid re-computing identical sub-graphs.
defp do_substitute(root_id, from_id, to_id) do
cache_key = {:substitute, root_id, from_id, to_id}
case Store.get_op_cache(cache_key) do
{:ok, result_id} ->
result_id
:not_found ->
result_id =
case Store.get_node(root_id) do
# Terminal nodes are unaffected unless they are the target of substitution.
{:ok, :true_terminal} -> Store.true_node_id()
{:ok, :false_terminal} -> Store.false_node_id()
# For internal nodes, recursively substitute in all children.
{:ok, {var, y, n, d}} ->
new_y = substitute(y, from_id, to_id)
new_n = substitute(n, from_id, to_id)
new_d = substitute(d, from_id, to_id)
Store.find_or_create_node(var, new_y, new_n, new_d)
# This case should not be hit if the graph is well-formed.
{:error, reason} ->
raise "substitute encountered an error getting node #{root_id}: #{reason}"
end
Store.put_op_cache(cache_key, result_id)
result_id
end
end
# defp do_simplify(tdd_id, assumptions) do
# IO.inspect([tdd_id, assumptions], label: "do_simplify(tdd_id, assumptions)")
# # First, check if the current assumption set is already a contradiction.
@ -1364,10 +1457,18 @@ defmodule Tdd.Compiler do
alias Tdd.Variable
alias Tdd.Store
alias Tdd.Algo
@doc "The main entry point. Takes a spec and returns its TDD ID."
@doc """
The main public entry point. Takes a spec and returns its TDD ID.
This now delegates to a private function with a context for recursion.
"""
@spec spec_to_id(TypeSpec.t()) :: non_neg_integer()
def spec_to_id(spec) do
# Start with an empty context map.
spec_to_id(spec, %{})
end
# This is the new core compilation function with a context map.
# The context tracks `{spec => placeholder_id}` for in-progress compilations.
defp spec_to_id(spec, context) do
normalized_spec = TypeSpec.normalize(spec)
cache_key = {:spec_to_id, normalized_spec}
@ -1376,54 +1477,107 @@ defmodule Tdd.Compiler do
id
:not_found ->
# Do the raw compilation first.
raw_id = do_spec_to_id(normalized_spec)
# THEN, do a final semantic simplification pass. This is the fix.
id = Algo.simplify(raw_id)
Store.put_op_cache(cache_key, id)
id
# Check if we are in a recursive call for a spec we're already compiling.
case Map.get(context, normalized_spec) do
placeholder_id when is_integer(placeholder_id) ->
placeholder_id
nil ->
# This is a new spec. Decide which compilation path to take.
if is_recursive_spec?(normalized_spec) do
# Use the full knot-tying logic only for recursive types.
compile_recursive_spec(normalized_spec, context)
else
# Use the simple, direct path for all other types.
compile_non_recursive_spec(normalized_spec, context)
end
end
end
end
defp is_recursive_spec?({:list_of, _}), do: true
defp is_recursive_spec?(_), do: false
# NEW: The logic for simple, non-recursive types.
defp compile_non_recursive_spec(spec, context) do
# Just compile the body directly. Pass context in case it contains recursive children.
raw_id = do_spec_to_id(spec, context)
final_id = Algo.simplify(raw_id)
# Cache and return.
Store.put_op_cache({:spec_to_id, spec}, final_id)
final_id
end
# This helper does the raw, structural compilation. It does NOT call simplify.
defp do_spec_to_id(spec) do
# NEW: The full knot-tying logic, now isolated.
defp compile_recursive_spec(spec, context) do
# 1. Create a placeholder and update the context.
placeholder_id = Store.create_placeholder(spec)
new_context = Map.put(context, spec, placeholder_id)
# 2. Compile the body. It will be built with pointers to the placeholder.
body_id = do_spec_to_id(spec, new_context)
# 3. THIS IS THE CRUCIAL FIX:
# Instead of mutating the store, we create a NEW graph where all
# internal pointers to `placeholder_id` are replaced with `body_id`.
# This makes the graph point to its own root, creating the cycle.
final_id = Algo.substitute(body_id, placeholder_id, body_id)
# 4. Simplify the resulting (now correctly cyclic) graph.
simplified_id = Algo.simplify(final_id)
# 5. Cache the result and return it.
Store.put_op_cache({:spec_to_id, spec}, simplified_id)
simplified_id
end
# This helper does the raw, structural compilation.
# It now takes and passes down the context.
defp do_spec_to_id(spec, context) do
case spec do
# Pass context on all recursive calls to spec_to_id/2
:any -> Store.true_node_id()
:none -> Store.false_node_id()
:atom -> create_base_type_tdd(Variable.v_is_atom())
:integer -> create_base_type_tdd(Variable.v_is_integer())
:list -> create_base_type_tdd(Variable.v_is_list())
:tuple -> create_base_type_tdd(Variable.v_is_tuple())
{:literal, val} when is_atom(val) -> compile_value_equality(:atom, Variable.v_atom_eq(val))
{:literal, val} when is_integer(val) -> compile_value_equality(:integer, Variable.v_int_eq(val))
{:literal, []} -> compile_value_equality(:list, Variable.v_list_is_empty())
{:integer_range, min, max} -> compile_integer_range(min, max)
{:literal, val} when is_atom(val) -> compile_value_equality(:atom, Variable.v_atom_eq(val), context)
{:literal, val} when is_integer(val) -> compile_value_equality(:integer, Variable.v_int_eq(val), context)
{:literal, []} -> compile_value_equality(:list, Variable.v_list_is_empty(), context)
{:integer_range, min, max} -> compile_integer_range(min, max, context)
{:union, specs} ->
Enum.map(specs, &spec_to_id/1)
Enum.map(specs, &spec_to_id(&1, context))
|> Enum.reduce(Store.false_node_id(), fn id, acc ->
Algo.apply(:sum, &op_union_terminals/2, id, acc)
end)
{:intersect, specs} ->
Enum.map(specs, &spec_to_id/1)
Enum.map(specs, &spec_to_id(&1, context))
|> Enum.reduce(Store.true_node_id(), fn id, acc ->
Algo.apply(:intersect, &op_intersect_terminals/2, id, acc)
end)
{:negation, sub_spec} ->
Algo.negate(spec_to_id(sub_spec))
Algo.negate(spec_to_id(sub_spec, context))
{:cons, head_spec, tail_spec} ->
id_head = spec_to_id(head_spec)
id_tail = spec_to_id(tail_spec)
compile_cons_from_ids(id_head, id_tail)
id_head = spec_to_id(head_spec, context)
id_tail = spec_to_id(tail_spec, context)
compile_cons_from_ids(id_head, id_tail, context)
{:tuple, elements} ->
compile_tuple(elements)
compile_tuple(elements, context)
{:list_of, element_spec} ->
compile_list_of(element_spec)
# --- REMOVE THE SPECIAL CASE ---
# The main `spec_to_id/2` logic now handles ALL recursive types.
{:list_of, _element_spec} ->
# We need to compile the logical definition: [] | cons(E, list_of(E))
# The TypeSpec normalizer doesn't do this expansion, so we do it here.
{:ok, {:list_of, element_spec}} = {:ok, spec}
recursive_def = {:union, [{:literal, []}, {:cons, element_spec, spec}]}
# Now compile this definition. The main `spec_to_id/2` will handle the knot-tying.
spec_to_id(recursive_def, context)
_ ->
raise "Tdd.Compiler: Cannot compile unknown spec: #{inspect(spec)}"
@ -1434,15 +1588,14 @@ defmodule Tdd.Compiler do
defp create_base_type_tdd(var), do: Store.find_or_create_node(var, Store.true_node_id(), Store.false_node_id(), Store.false_node_id())
defp compile_value_equality(base_type_spec, value_var) do
defp compile_value_equality(base_type_spec, value_var, context) do
eq_node = create_base_type_tdd(value_var)
# Note: spec_to_id is safe here because it's on non-recursive base types.
base_node_id = spec_to_id(base_type_spec)
base_node_id = spec_to_id(base_type_spec, context)
Algo.apply(:intersect, &op_intersect_terminals/2, base_node_id, eq_node)
end
defp compile_integer_range(min, max) do
base_id = spec_to_id(:integer)
defp compile_integer_range(min, max, context) do
base_id = spec_to_id(:integer, context)
lt_min_tdd = if min != :neg_inf, do: create_base_type_tdd(Variable.v_int_lt(min))
gte_min_tdd = if lt_min_tdd, do: Algo.negate(lt_min_tdd), else: spec_to_id(:any)
id_with_min = Algo.apply(:intersect, &op_intersect_terminals/2, base_id, gte_min_tdd)
@ -1455,15 +1608,15 @@ defmodule Tdd.Compiler do
end
end
defp compile_cons_from_ids(h_id, t_id) do
defp compile_cons_from_ids(h_id, t_id, context) do # Pass context
# Build `list & !is_empty` manually and safely.
id_list = create_base_type_tdd(Variable.v_is_list())
id_is_empty = create_base_type_tdd(Variable.v_list_is_empty())
id_not_is_empty = Algo.negate(id_is_empty)
non_empty_list_id = Algo.apply(:intersect, &op_intersect_terminals/2, id_list, id_not_is_empty)
head_checker = sub_problem(&Variable.v_list_head_pred/1, h_id)
tail_checker = sub_problem(&Variable.v_list_tail_pred/1, t_id)
head_checker = sub_problem(&Variable.v_list_head_pred/1, h_id, context) # Pass context
tail_checker = sub_problem(&Variable.v_list_tail_pred/1, t_id, context) # Pass context
[non_empty_list_id, head_checker, tail_checker]
|> Enum.reduce(Store.true_node_id(), fn id, acc ->
@ -1471,9 +1624,9 @@ defmodule Tdd.Compiler do
end)
end
defp compile_tuple(elements) do
defp compile_tuple(elements, context) do
size = length(elements)
base_id = spec_to_id(:tuple)
base_id = spec_to_id(:tuple, context)
size_tdd = create_base_type_tdd(Variable.v_tuple_size_eq(size))
initial_id = Algo.apply(:intersect, &op_intersect_terminals/2, base_id, size_tdd)
@ -1482,57 +1635,101 @@ defmodule Tdd.Compiler do
|> Enum.reduce(initial_id, fn {elem_spec, index}, acc_id ->
elem_id = spec_to_id(elem_spec)
elem_key_constructor = &Variable.v_tuple_elem_pred(index, &1)
elem_checker = sub_problem(elem_key_constructor, elem_id)
elem_checker = sub_problem(elem_key_constructor, elem_id, context) # Pass context
Algo.apply(:intersect, &op_intersect_terminals/2, acc_id, elem_checker)
end)
end
defp sub_problem(sub_key_constructor, tdd_id) do
defp do_sub_problem(sub_key_constructor, tdd_id, context) do
# The `if` block is now a standard multi-clause `cond` or `case` at the top.
# Let's use a `cond` to make the guard explicit.
cond do
# Guard against invalid IDs from placeholder children.
tdd_id < 0 ->
Store.false_node_id()
# If it's a valid ID, proceed with the main logic.
true ->
case Store.get_node(tdd_id) do
{:ok, :true_terminal} ->
Store.true_node_id()
{:ok, :false_terminal} ->
Store.false_node_id()
# Handle placeholders by operating on their spec, not their TDD structure.
{:ok, {{:placeholder, spec}, _, _, _}} ->
dummy_var = sub_key_constructor.(:dummy)
case dummy_var do
{5, :c_head, :dummy, _} ->
{:list_of, element_spec} = spec
spec_to_id(element_spec, context)
{5, :d_tail, :dummy, _} ->
tdd_id
{4, :b_element, index, :dummy} ->
{:tuple, elements} = spec
spec_to_id(Enum.at(elements, index), context)
_ ->
raise "sub_problem encountered an unhandled recursive predicate on a placeholder: #{inspect(dummy_var)}"
end
# The normal, non-placeholder case
{:ok, {var, y, n, d}} ->
Store.find_or_create_node(
sub_key_constructor.(var),
sub_problem(sub_key_constructor, y, context),
sub_problem(sub_key_constructor, n, context),
sub_problem(sub_key_constructor, d, context)
)
# This case should now be unreachable.
{:error, :not_found} ->
raise "sub_problem received an unknown tdd_id: #{tdd_id}"
end
end
end
defp sub_problem(sub_key_constructor, tdd_id, context) do
cache_key = {:sub_problem, sub_key_constructor, tdd_id}
# Note: context is not part of the cache key. This is a simplification that
# assumes the result of a sub_problem is independent of the wider compilation
# context, which is true for our use case.
case Store.get_op_cache(cache_key) do
{:ok, result_id} -> result_id
{:ok, result_id} ->
result_id
:not_found ->
result_id = do_sub_problem(sub_key_constructor, tdd_id)
result_id = do_sub_problem(sub_key_constructor, tdd_id, context)
Store.put_op_cache(cache_key, result_id)
result_id
end
end
defp do_sub_problem(sub_key_constructor, tdd_id) do
case Store.get_node(tdd_id) do
{:ok, :true_terminal} -> Store.true_node_id()
{:ok, :false_terminal} -> Store.false_node_id()
{:ok, {var, y, n, d}} ->
Store.find_or_create_node(
sub_key_constructor.(var),
sub_problem(sub_key_constructor, y),
sub_problem(sub_key_constructor, n),
sub_problem(sub_key_constructor, d)
)
end
end
defp compile_list_of(element_spec) do
norm_elem_spec = TypeSpec.normalize(element_spec)
cache_key = {:compile_list_of, norm_elem_spec}
case Store.get_op_cache(cache_key) do
{:ok, id} -> id
:not_found ->
id = do_compile_list_of(norm_elem_spec)
Store.put_op_cache(cache_key, id)
id
end
end
defp do_compile_list_of(element_spec) do
id_elem = spec_to_id(element_spec)
id_empty_list = spec_to_id({:literal, []})
step_function = fn id_x ->
id_cons = compile_cons_from_ids(id_elem, id_x)
Algo.apply(:sum, &op_union_terminals/2, id_empty_list, id_cons)
end
loop_until_stable(Store.false_node_id(), step_function)
end
# defp compile_list_of(element_spec) do
# norm_elem_spec = TypeSpec.normalize(element_spec)
# cache_key = {:compile_list_of, norm_elem_spec}
# case Store.get_op_cache(cache_key) do
# {:ok, id} -> id
# :not_found ->
# id = do_compile_list_of(norm_elem_spec)
# Store.put_op_cache(cache_key, id)
# id
# end
# end
#
# defp do_compile_list_of(element_spec) do
# id_elem = spec_to_id(element_spec)
# id_empty_list = spec_to_id({:literal, []})
# step_function = fn id_x ->
# id_cons = compile_cons_from_ids(id_elem, id_x)
# Algo.apply(:sum, &op_union_terminals/2, id_empty_list, id_cons)
# end
# loop_until_stable(Store.false_node_id(), step_function)
# end
# THIS IS THE FINAL, CORRECTED LOOP
defp loop_until_stable(prev_id, step_function, iteration \\ 0) do