checkpoint tuples

This commit is contained in:
Kacper Marzecki 2025-06-16 15:35:54 +02:00
parent becef5db2f
commit 0dc535d052
3 changed files with 497 additions and 28 deletions

View File

@ -57232,3 +57232,209 @@ This approach leverages the excellent foundation you've already built in the `ti
> Model: openrouter/google/gemini-2.5-pro-preview with context edit format > Model: openrouter/google/gemini-2.5-pro-preview with context edit format
> Git repo: .git with 62 files > Git repo: .git with 62 files
> Repo-map: using 8192 tokens, always refresh > Repo-map: using 8192 tokens, always refresh
>
>
> ^C again to exit
> Unable to list files in git repo: BadObject: b'df8d705509adca9e964524519a1755d8a584e262'
> Is your git repo corrupted?
>
>
> ^C KeyboardInterrupt
# aider chat started at 2025-06-16 11:51:46
> You can skip this check with --no-gitignore
> Add .aider* to .gitignore (recommended)? (Y)es/(N)o [Yes]: n
> /Users/kacper.marzecki@schibsted.com/.local/bin/aider --model gemini --watch-files --read Conventions.md --thinking-tokens 10k --reasoning-effort high
> Warning: gemini/gemini-2.5-pro-preview-05-06 does not support 'reasoning_effort', ignoring.
> Use --no-check-model-accepts-settings to force the 'reasoning_effort' setting.
> Warning: gemini/gemini-2.5-pro-preview-05-06 does not support 'thinking_tokens', ignoring.
> Use --no-check-model-accepts-settings to force the 'thinking_tokens' setting.
> Aider v0.84.0
> Main model: gemini/gemini-2.5-pro-preview-05-06 with diff-fenced edit format
> Weak model: gemini/gemini-2.5-flash-preview-04-17
> Git repo: .git with 65 files
> Repo-map: using 4096 tokens, auto refresh
> Added Conventions.md to the chat (read-only).
> Added test.exs to the chat
> Processing your request...
Okay, I will add the test case as requested. This involves defining a couple of helper functions to construct TDDs for tuples with specific element types, as this functionality doesn't appear to be available as a built-in constructor. These helpers will use existing TDD primitives.
Here's the plan:
1. Define two helper functions:
* `build_tuple_element_tdd_h(element_index, element_type_id, success_path_id)`: Recursively builds the TDD part for a single element by adapting the element's type TDD variables to be specific to that element's index.
* `create_specific_tuple_type_h(element_type_ids)`: Uses `build_tuple_element_tdd_h` to construct the full TDD for a tuple with a list of specified element types.
2. Use these helpers to create the TDDs for `{1, :foo}` and `{int_gt_0, :foo | :bar}`.
3. Add the subtyping test using the existing `test` function.
4. This new code will replace the `#AI! ...` comment at the end of the file.
Here are the *SEARCH/REPLACE* blocks:
```elixir
test.exs
<<<<<<< SEARCH
|> Tdd.print_tdd(asd)
#AI! lets add a test case for {1, :foo} <: {int_gt_0, :foo | :bar}
=======
|> Tdd.print_tdd(asd)
# Helper function to recursively build TDD for an element's type,
# adapting its variables to be specific to the element's index.
defmodule TupleTestHelpers do
def build_tuple_element_tdd_h(_element_index, element_type_id, success_path_id, _variable_prefix_module)
when element_type_id == Tdd.type_any() do
# If element type is 'any', this part of the check passes, go to success_path_id
success_path_id
end
def build_tuple_element_tdd_h(_element_index, element_type_id, _success_path_id, _variable_prefix_module)
when element_type_id == Tdd.type_none() do
# If element type is 'none', this path fails
Tdd.type_none()
end
def build_tuple_element_tdd_h(element_index, element_type_id, success_path_id, variable_prefix_module) do
node_details = Tdd.get_node_details(element_type_id)
case node_details do
:true_terminal ->
# Should be caught by guard Tdd.type_any(), but handle defensively
success_path_id
:false_terminal ->
# Should be caught by guard Tdd.type_none(), but handle defensively
Tdd.type_none()
{original_var, y_id, n_id, d_id} ->
# Adapt original_var to be specific to this element_index
# The Tdd.v_tuple_elem_pred function creates the correctly prefixed variable
element_specific_var = variable_prefix_module.v_tuple_elem_pred(element_index, original_var)
yes_branch_tdd =
build_tuple_element_tdd_h(element_index, y_id, success_path_id, variable_prefix_module)
no_branch_tdd =
build_tuple_element_tdd_h(element_index, n_id, success_path_id, variable_prefix_module)
dc_branch_tdd =
build_tuple_element_tdd_h(element_index, d_id, success_path_id, variable_prefix_module)
Tdd.make_node_raw(element_specific_var, yes_branch_tdd, no_branch_tdd, dc_branch_tdd)
end
end
# Helper function to create a TDD for a tuple with specific element types
def create_specific_tuple_type_h(element_type_ids, variable_prefix_module \\ Tdd) do
num_elements = length(element_type_ids)
# Build TDD for element checks from last to first
# The 'success_path_id' for the last element's check is Tdd.type_any() (representing TRUE)
final_elements_check_tdd =
Enum.reduce(Enum.reverse(0..(num_elements - 1)), Tdd.type_any(), fn i, acc_tdd ->
element_type_id = Enum.at(element_type_ids, i)
build_tuple_element_tdd_h(i, element_type_id, acc_tdd, variable_prefix_module)
end)
# Wrap with size check
size_check_node =
Tdd.make_node_raw(
variable_prefix_module.v_tuple_size_eq(num_elements),
final_elements_check_tdd, # If size matches, proceed to element checks
Tdd.type_none(), # If size mismatches, it's not this tuple type
Tdd.type_none() # DC for size usually means not this specific tuple type
)
# Wrap with primary tuple type check
raw_final_tdd =
Tdd.make_node_raw(
variable_prefix_module.@v_is_tuple,
size_check_node, # If is_tuple, proceed to size check
Tdd.type_none(), # If not a tuple, then false
Tdd.type_none() # DC for is_tuple usually means not this specific type
)
# Simplify the constructed TDD
Tdd.simplify_with_constraints(raw_final_tdd, %{})
end
end
IO.puts("\n--- Specific Tuple Subtyping Test ---")
# Type for {1, :foo}
el1_type1 = Tdd.type_int_eq(1)
el2_type1 = Tdd.type_atom_literal(:foo)
tdd_tuple_1_foo = TupleTestHelpers.create_specific_tuple_type_h([el1_type1, el2_type1])
# Type for {int_gt_0, :foo | :bar}
el1_type2 = Tdd.type_int_gt(0)
el2_type2_foo = Tdd.type_atom_literal(:foo)
el2_type2_bar = Tdd.type_atom_literal(:bar)
el2_type2 = Tdd.sum(el2_type2_foo, el2_type2_bar)
tdd_tuple_int_gt0_foo_or_bar = TupleTestHelpers.create_specific_tuple_type_h([el1_type2, el2_type2])
# IO.puts("TDD for {1, :foo}:")
# Tdd.print_tdd(tdd_tuple_1_foo)
# IO.puts("TDD for {int_gt_0, :foo | :bar}:")
# Tdd.print_tdd(tdd_tuple_int_gt0_foo_or_bar)
test.(
"{1, :foo} <: {int_gt_0, :foo | :bar}",
true,
Tdd.is_subtype(tdd_tuple_1_foo, tdd_tuple_int_gt0_foo_or_bar)
)
IO.inspect(Process.get(:test_failures, []), label: "Current test failures after tuple test")
>>>>>>> REPLACE
```
> Tokens: 23k sent, 1.4k received. Cost: $0.04 message, $0.04 session.
> Applied edit to test.exs
> Processing your request...
Okay, I understand. The issue is that Elixir guards have restrictions on what functions can be called within them. Calls to `Tdd.type_any()` and `Tdd.type_none()` are considered "remote" calls in this context, even if they return simple values.
To fix this, I will replace the calls to `Tdd.type_any()` and `Tdd.type_none()` in the guard clauses with their literal return values.
- `Tdd.type_any()` returns `@true_node_id` which is `1`.
- `Tdd.type_none()` returns `@false_node_id` which is `0`.
I will make these changes and remove the "AI!" comment.
Here is the *SEARCH/REPLACE block*:
```elixir
test.exs
<<<<<<< SEARCH
defmodule TupleTestHelpers do
def build_tuple_element_tdd_h(_element_index, element_type_id, success_path_id, _variable_prefix_module)
# AI! You cannot use remote functions inside function guards
when element_type_id == Tdd.type_any() do
# If element type is 'any', this part of the check passes, go to success_path_id
success_path_id
end
def build_tuple_element_tdd_h(_element_index, element_type_id, _success_path_id, _variable_prefix_module)
when element_type_id == Tdd.type_none() do
# If element type is 'none', this path fails
Tdd.type_none()
end
=======
defmodule TupleTestHelpers do
def build_tuple_element_tdd_h(_element_index, element_type_id, success_path_id, _variable_prefix_module)
when element_type_id == 1 do # Was Tdd.type_any()
# If element type is 'any', this part of the check passes, go to success_path_id
success_path_id
end
def build_tuple_element_tdd_h(_element_index, element_type_id, _success_path_id, _variable_prefix_module)
when element_type_id == 0 do # Was Tdd.type_none()
# If element type is 'none', this path fails
Tdd.type_none()
end
>>>>>>> REPLACE
```
> Tokens: 25k sent, 457 received. Cost: $0.04 message, $0.08 session.
> Applied edit to test.exs

View File

@ -4182,3 +4182,6 @@
# 2025-06-15 11:56:09.668461 # 2025-06-15 11:56:09.668461
+/context +/context
# 2025-06-16 11:51:48.065221
+n

314
test.exs
View File

@ -332,6 +332,51 @@ defmodule Tdd do
end end
defp check_assumptions_consistency(assumptions_map) do defp check_assumptions_consistency(assumptions_map) do
# 1. Partition assumptions by the entity they apply to.
# :top_level for the main value, and {:elem, index} for tuple elements.
partitioned_assumptions =
Enum.group_by(assumptions_map, fn
# Variable for a tuple element's property. Example: {4, :element, 0, {0, :is_integer}}
{{4, :element, index, _nested_var}, _value} -> {:elem, index}
# All other variables
_ -> :top_level
end)
# 2. Extract and check the assumptions for the top-level entity.
top_level_assumptions =
Map.get(partitioned_assumptions, :top_level, [])
|> Map.new()
case do_check_flat_consistency(top_level_assumptions) do
:contradiction ->
:contradiction
:consistent ->
# 3. If top-level is consistent, check each tuple element's assumptions.
element_partitions = Map.drop(partitioned_assumptions, [:top_level])
Enum.reduce_while(element_partitions, :consistent, fn
# The key is {:elem, index}, the value is a list of {var, val} tuples
{{:elem, _index}, assumptions_list}, _acc ->
# Transform the list of assumptions into a "flat" map for the element,
# by extracting the nested predicate.
sub_assumptions =
assumptions_list
|> Map.new(fn {{_vcat, _ptype, _idx, nested_var}, value} -> {nested_var, value} end)
# 4. Recursively call the main consistency checker on the sub-problem.
# This allows for arbitrarily nested tuple types.
case check_assumptions_consistency(sub_assumptions) do
:contradiction -> {:halt, :contradiction}
:consistent -> {:cont, :consistent}
end
end)
end
end
# The original check_assumptions_consistency function is renamed to this.
# It performs the actual logic for a "flat" set of assumptions about a single entity.
defp do_check_flat_consistency(assumptions_map) do
# Check 1: Primary type mutual exclusivity # Check 1: Primary type mutual exclusivity
primary_true_predicates = primary_true_predicates =
Enum.reduce(assumptions_map, MapSet.new(), fn Enum.reduce(assumptions_map, MapSet.new(), fn
@ -508,40 +553,23 @@ defmodule Tdd do
end end
if is_implied_true || is_implied_false do if is_implied_true || is_implied_false do
# IO.inspect({assumptions_map, pred_type, n_val, current_interval_min, current_interval_max, implied_true, implied_false}, label: "CAC Int DC Contradiction")
# :dc assumption contradicted by derived interval
{:halt, :contradiction} {:halt, :contradiction}
else else
{:cont, :consistent} {:cont, :consistent}
end end
_other_assumption, acc_status -> _other_assumption, acc_status ->
# Continue with current status
{:cont, acc_status} {:cont, acc_status}
end) end)
# End reduce_while for :dc checks
end end
# End case for calculate_final_interval
# No integer specific preds or not relevant to check integer logic
true -> true ->
:consistent :consistent
end end
# End cond for integer checks
end end
# End else for tuple_size_trues
end end
# End true for tuple_specific_pred
end end
# End cond for tuple_specific_pred
end end
# End else for atom_value_trues
end end
raw_result raw_result
@ -558,7 +586,7 @@ defmodule Tdd do
defp max_opt(x, y), do: max(x, y) defp max_opt(x, y), do: max(x, y)
# --- Semantic Simplification (Memoized) --- # --- Semantic Simplification (Memoized) ---
defp simplify_with_constraints(tdd_id, assumptions_map) do def simplify_with_constraints(tdd_id, assumptions_map) do
state = get_state() state = get_state()
# Sort assumptions for cache key consistency # Sort assumptions for cache key consistency
sorted_assumptions_list = Enum.sort(Map.to_list(assumptions_map)) sorted_assumptions_list = Enum.sort(Map.to_list(assumptions_map))
@ -682,9 +710,12 @@ defmodule Tdd do
@v_is_atom {0, :is_atom} @v_is_atom {0, :is_atom}
@v_is_tuple {0, :is_tuple} @v_is_tuple {0, :is_tuple}
# New primary type
@v_is_integer {0, :is_integer} @v_is_integer {0, :is_integer}
def v_is_atom, do: @v_is_atom
def v_is_tuple, do: @v_is_tuple
def v_is_integer, do: @v_is_integer
def v_atom_eq(atom_val), do: {1, :value, atom_val} def v_atom_eq(atom_val), do: {1, :value, atom_val}
def v_tuple_size_eq(size), do: {4, :size, size} def v_tuple_size_eq(size), do: {4, :size, size}
def v_tuple_elem_pred(index, nested_pred_id), do: {4, :element, index, nested_pred_id} def v_tuple_elem_pred(index, nested_pred_id), do: {4, :element, index, nested_pred_id}
@ -732,6 +763,70 @@ defmodule Tdd do
make_node_for_constructors(@v_is_integer, @true_node_id, @false_node_id, @false_node_id) make_node_for_constructors(@v_is_integer, @true_node_id, @false_node_id, @false_node_id)
end end
def type_tuple_elem(element_index, element_type_id, success_path_id) do
node_details = get_node_details(element_type_id)
case node_details do
:true_terminal ->
# Should be caught by guard Tdd.type_any(), but handle defensively
success_path_id
:false_terminal ->
# Should be caught by guard Tdd.type_none(), but handle defensively
type_none()
{original_var, y_id, n_id, d_id} ->
# Adapt original_var to be specific to this element_index
# The Tdd.v_tuple_elem_pred function creates the correctly prefixed variable
element_specific_var = v_tuple_elem_pred(element_index, original_var)
yes_branch_tdd = type_tuple_elem(element_index, y_id, success_path_id)
no_branch_tdd = type_tuple_elem(element_index, n_id, success_path_id)
dc_branch_tdd = type_tuple_elem(element_index, d_id, success_path_id)
make_node(element_specific_var, yes_branch_tdd, no_branch_tdd, dc_branch_tdd)
end
end
# TDD for a tuple with specific element types
def type_tuple(element_type_ids) do
num_elements = length(element_type_ids)
# Build TDD for element checks from last to first
# The 'success_path_id' for the last element's check is Tdd.type_any() (representing TRUE)
final_elements_check_tdd =
Enum.reduce(Enum.reverse(0..(num_elements - 1)), Tdd.type_any(), fn i, acc_tdd ->
element_type_id = Enum.at(element_type_ids, i)
type_tuple_elem(i, element_type_id, acc_tdd)
end)
# Wrap with size check
size_check_node =
make_node(
v_tuple_size_eq(num_elements),
# If size matches, proceed to element checks
final_elements_check_tdd,
# If size mismatches, it's not this tuple type
type_none(),
# DC for size usually means not this specific tuple type
type_none()
)
# Wrap with primary tuple type check
raw_final_tdd =
make_node(
v_is_tuple(),
# If is_tuple, proceed to size check
size_check_node,
# If not a tuple, then false
type_none(),
# DC for is_tuple usually means not this specific type
type_none()
)
# Simplify the constructed TDD
simplify_with_constraints(raw_final_tdd, %{})
end
def type_int_eq(n) do def type_int_eq(n) do
int_eq_node = make_node_raw(v_int_eq(n), @true_node_id, @false_node_id, @false_node_id) int_eq_node = make_node_raw(v_int_eq(n), @true_node_id, @false_node_id, @false_node_id)
raw_node = make_node_raw(@v_is_integer, int_eq_node, @false_node_id, @false_node_id) raw_node = make_node_raw(@v_is_integer, int_eq_node, @false_node_id, @false_node_id)
@ -1313,18 +1408,183 @@ defmodule IntegerTests do
Tdd.is_subtype(Tdd.type_int_eq(12), union_disjoint_ranges) Tdd.is_subtype(Tdd.type_int_eq(12), union_disjoint_ranges)
) )
Tdd.print_tdd(union_disjoint_ranges)
IO.inspect(Process.get(:test_failures, [])) IO.inspect(Process.get(:test_failures, []))
end end
end end
# test_all.() defmodule TupleTests do
# IntegerTests.run(test) import Tdd
tdd_int_gt_10 = Tdd.type_int_gt(10) def run(test_fn) do
tdd_int_gt_3 = Tdd.type_int_gt(3) Process.put(:test_failures, [])
# Re-init the system for a clean slate for these tests
Tdd.init_tdd_system()
IO.puts("\n--- Running TupleTests ---")
tdd_int = Tdd.type_integer() # --- Basic Types for convenience ---
Tdd.intersect(Tdd.sum(tdd_int_gt_10, tdd_int_gt_3), tdd_int) t_atom = type_atom()
|> Tdd.print_tdd(asd) t_int = type_integer()
t_foo = type_atom_literal(:foo)
t_bar = type_atom_literal(:bar)
t_int_5 = type_int_eq(5)
t_int_6 = type_int_eq(6)
t_int_pos = type_int_gt(0)
t_any = type_any()
t_none = type_none()
t_tuple = type_tuple() # any tuple
t_empty_tuple = type_empty_tuple()
# --- Specific Tuple Types ---
# {atom(), integer()}
tup_atom_int = type_tuple([t_atom, t_int])
# {:foo, 5}
tup_foo_5 = type_tuple([t_foo, t_int_5])
# {pos_integer(), atom()}
tup_pos_atom = type_tuple([t_int_pos, t_atom])
# {atom(), any}
tup_atom_any = type_tuple([t_atom, t_any])
# {any, integer()}
tup_any_int = type_tuple([t_any, t_int])
# a tuple of size 2, {any, any}
tup_s2_any = type_tuple_sized_any(2)
# a tuple of size 3, {any, any, any}
tup_s3_any = type_tuple_sized_any(3)
# {integer(), atom()}
tup_int_atom = type_tuple([t_int, t_atom])
# {{:foo}}
tup_nested_foo = type_tuple([type_tuple([t_foo])])
# {{atom()}}
tup_nested_atom = type_tuple([type_tuple([t_atom])])
# {any, none} -> this should resolve to none
tup_with_none = type_tuple([t_any, t_none])
IO.puts("\n--- Section: Basic Subtyping ---")
test_fn.("{:foo, 5} <: {atom, int}", true, is_subtype(tup_foo_5, tup_atom_int))
test_fn.("{atom, int} <: {:foo, 5}", false, is_subtype(tup_atom_int, tup_foo_5))
test_fn.("{:foo, 5} <: {pos_int, atom}", false, is_subtype(tup_foo_5, tup_pos_atom))
test_fn.("{pos_int, atom} <: {atom, int}", false, is_subtype(tup_pos_atom, tup_atom_int))
test_fn.("{atom, int} <: tuple()", true, is_subtype(tup_atom_int, t_tuple))
test_fn.("tuple() <: {atom, int}", false, is_subtype(t_tuple, tup_atom_int))
IO.puts("\n--- Section: Size-related Subtyping ---")
test_fn.("{atom, int} <: tuple_size_2_any", true, is_subtype(tup_atom_int, tup_s2_any))
test_fn.("tuple_size_2_any <: {atom, int}", false, is_subtype(tup_s2_any, tup_atom_int))
test_fn.("{atom, int} <: tuple_size_3_any", false, is_subtype(tup_atom_int, tup_s3_any))
test_fn.("tuple_size_2_any <: tuple_size_3_any", false, is_subtype(tup_s2_any, tup_s3_any))
test_fn.("{} <: tuple()", true, is_subtype(t_empty_tuple, t_tuple))
test_fn.("{} <: tuple_size_2_any", false, is_subtype(t_empty_tuple, tup_s2_any))
IO.puts("\n--- Section: Intersection ---")
# {atom, any} & {any, int} -> {atom, int}
intersect1 = intersect(tup_atom_any, tup_any_int)
test_fn.("({atom,any} & {any,int}) == {atom,int}", true, intersect1 == tup_atom_int)
# {atom, int} & {int, atom} -> none
intersect2 = intersect(tup_atom_int, tup_int_atom)
test_fn.("({atom,int} & {int,atom}) == none", true, intersect2 == t_none)
# tuple_size_2 & tuple_size_3 -> none
intersect3 = intersect(tup_s2_any, tup_s3_any)
test_fn.("(tuple_size_2 & tuple_size_3) == none", true, intersect3 == t_none)
# tuple() & {atom, int} -> {atom, int}
intersect4 = intersect(t_tuple, tup_atom_int)
test_fn.("(tuple() & {atom,int}) == {atom,int}", true, intersect4 == tup_atom_int)
IO.puts("\n--- Section: Union ---")
# {:foo, 5} | {pos_int, atom}
union1 = sum(tup_foo_5, tup_pos_atom)
test_fn.("{:foo, 5} <: ({:foo, 5} | {pos_int, atom})", true, is_subtype(tup_foo_5, union1))
test_fn.("{pos_int, atom} <: ({:foo, 5} | {pos_int, atom})", true, is_subtype(tup_pos_atom, union1))
test_fn.("{atom, int} <: ({:foo, 5} | {pos_int, atom})", false, is_subtype(tup_atom_int, union1))
# {atom, any} | {any, int} -> a complex type, let's check subtyping against it
union2 = sum(tup_atom_any, tup_any_int)
# {atom, int} is in both parts of the union.
test_fn.("{atom, int} <: ({atom,any} | {any,int})", true, is_subtype(tup_atom_int, union2))
# {:foo, :bar} is only in {atom, any}.
test_fn.("{:foo, :bar} <: ({atom,any} | {any,int})", true, is_subtype(type_tuple([t_foo, t_bar]), union2))
# {5, 6} is only in {any, int}.
test_fn.("{5, 6} <: ({atom,any} | {any,int})", true, is_subtype(type_tuple([t_int_5, t_int_6]), union2))
# {5, :foo} is in neither part of the union.
test_fn.("{5, :foo} <: ({atom,any} | {any,int})", false, is_subtype(type_tuple([t_int_5, t_foo]), union2))
IO.puts("\n--- Section: Negation and Type Difference ---")
# atom is disjoint from tuple, so atom <: ¬tuple
test_fn.("atom <: ¬tuple", true, is_subtype(t_atom, negate(t_tuple)))
# A specific tuple should not be a subtype of the negation of a more general tuple type it belongs to
test_fn.("{atom, int} <: ¬tuple()", false, is_subtype(tup_atom_int, negate(t_tuple)))
# {int, atom} is a subtype of ¬{atom, int} because their elements differ
test_fn.("{int, atom} <: ¬{atom, int}", true, is_subtype(tup_int_atom, negate(tup_atom_int)))
# tuple_size_3 is a subtype of ¬tuple_size_2 because their sizes differ
test_fn.("tuple_size_3 <: ¬tuple_size_2", true, is_subtype(tup_s3_any, negate(tup_s2_any)))
# Type difference: tuple_size_2 - {atom, any} -> should be {¬atom, any} for size 2 tuples.
diff1 = intersect(tup_s2_any, negate(tup_atom_any))
# {integer, integer} has a first element that is not an atom, so it should be in the difference.
tup_int_int = type_tuple([t_int, t_int])
test_fn.("{int, int} <: (tuple_size_2 - {atom, any})", true, is_subtype(tup_int_int, diff1))
test_fn.("{atom, int} <: (tuple_size_2 - {atom, any})", false, is_subtype(tup_atom_int, diff1))
IO.puts("\n--- Section: Nested Tuples ---")
test_fn.("{{:foo}} <: {{atom}}", true, is_subtype(tup_nested_foo, tup_nested_atom))
test_fn.("{{atom}} <: {{:foo}}", false, is_subtype(tup_nested_atom, tup_nested_foo))
# Intersection of disjoint nested types: {{:foo}} & {{:bar}}
intersect_nested = intersect(tup_nested_foo, type_tuple([type_tuple([t_bar])]))
test_fn.("{{:foo}} & {{:bar}} == none", true, intersect_nested == t_none)
# Union of nested types
union_nested = sum(tup_nested_foo, type_tuple([type_tuple([t_bar])]))
test_fn.("{{:foo}} <: ({{:foo}} | {{:bar}})", true, is_subtype(tup_nested_foo, union_nested))
test_fn.("{{:bar}} <: ({{:foo}} | {{:bar}})", true, is_subtype(type_tuple([type_tuple([t_bar])]), union_nested))
test_fn.("{{atom}} <: ({{:foo}} | {{:bar}})", false, is_subtype(tup_nested_atom, union_nested))
IO.puts("\n--- Section: Edge Cases (any, none) ---")
# A type `{any, none}` should not be possible. The value `none` cannot exist.
# The simplification logic should reduce this to `type_none`.
test_fn.("{any, none} == none", true, tup_with_none == t_none)
# Intersection with a tuple containing none should result in none
intersect_with_none_tuple = intersect(tup_atom_int, tup_with_none)
test_fn.("{atom,int} & {any,none} == none", true, intersect_with_none_tuple == t_none)
# Union with a tuple containing none should be a no-op
union_with_none_tuple = sum(tup_atom_int, tup_with_none)
test_fn.("{atom,int} | {any,none} == {atom,int}", true, union_with_none_tuple == tup_atom_int)
# --- Original tests from problem description for regression ---
IO.puts("\n--- Specific Tuple Subtyping Test (Original) ---")
test_fn.(
"{1, :foo} <: {int_gt_0, :foo | :bar}",
true,
is_subtype(
type_tuple([type_int_eq(1), type_atom_literal(:foo)]),
type_tuple([type_int_gt(0), sum(type_atom_literal(:foo), type_atom_literal(:bar))])
)
)
test_fn.(
"{0, :foo} <: {int_gt_0, :foo | :bar}",
false,
is_subtype(
type_tuple([type_int_eq(0), type_atom_literal(:foo)]),
type_tuple([type_int_gt(0), sum(type_atom_literal(:foo), type_atom_literal(:bar))])
)
)
test_fn.(
"{1, :kek} <: {int_gt_0, :foo | :bar}",
false,
is_subtype(
type_tuple([
type_int_eq(1),
type_atom_literal(:kek)
]),
type_tuple([type_int_gt(0), sum(type_atom_literal(:foo), type_atom_literal(:bar))])
)
)
IO.inspect(Process.get(:test_failures, []), label: "TupleTests failures")
end
end
test_all.()
IntegerTests.run(test)
TupleTests.run(test)